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ABSTRACT: Accurate, explicit, and analytic expressions are derived for the dewpoint and frost point as functions of
temperature and relative humidity. These are derived theoretically in terms of physical constants using the Rankine–
Kirchhoff approximations, which assume an ideal gas, fixed heat capacities, and zero specific volume of condensates.
Compared to modern laboratory measurements, the expressions are accurate to within a few hundredths of a degree over
the full range of Earth-relevant temperatures, from 180 to 273K for the frost point and 230 to 330K for the dewpoint.
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John Dalton first introduced a method for reliably measur-
ing the dewpoint, accomplished by determining the highest
temperature of water in a glass container that condenses water
on its exterior (Dalton 1802b,a). This temperature was originally
referred to as the ‘‘vapor point’’ or ‘‘point of condensation,’’ but
the term ‘‘dewpoint’’ came into use shortly thereafter (Howard
1818; Dalton 1824). In the years since, many different analytic
expressions have been proposed for the dewpoint in terms of
temperature and relative humidity (e.g.,Mitchell 1967;Wanielista
et al. 1997; Sargent 1980; Urbank et al. 2001; Lawrence 2005), but
only one has been derived theoretically and that one, as we will
see, has errors that can exceed 1K. This short note derives,
from first principles, analytic expressions for the dewpoint and
frost point that are accurate to within hundredths of a degree.

The dewpoint Td is the temperature to which air must be
cooled at constant pressure to reach saturation with respect to
liquid water. At the dewpoint, the vapor pressure py equals the
saturation vapor pressure with respect to liquid py*

,l(Td); here,
the asterisk denotes saturation and the superscript l reminds us
that this is with respect to a planar surface of liquid. In the
absence of phase changes, the partial pressure of water vapor
does not change as the air is cooled isobarically, so we can write
py as RHlpy*

,l(T), where T is the original temperature of the air
and RHl is the original relative humidity of the air with respect
to liquid water. Therefore, p*y (Td)5RHlpy*

,l(T), which can be
written as (e.g., Bosen 1958)
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Given an expression for the function py*
,l, Eq. (1) gives RHl

as an explicit function of temperature T and dewpoint Td.
Likewise, given the frost point Tf, we can calculate the relative
humidity with respect to solid water RHs as
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where py*
,s is the saturation vapor pressure with respect to a

planar surface of solid water, i.e., ice.
Given T and RHl (or RHs), the most accurate value of the

dew (or frost) point is obtained by using an empirical expres-
sion for py*

,l (or py*
,s) that has been obtained by fitting to labo-

ratory measurements such as Eq. (10) of Murphy and Koop
(2005) [or Eq. (4) ofWagner et al. 2011] and then solving forTd

(orTf) using a numerical root solver. Our goal here, however, is
to derive expressions for Td and Tf that are not only accurate,
but also explicit and analytic in terms of temperature and rel-
ative humidity. Therefore, we must invert py*

,l. For this pur-
pose, it is common to use the empirical Magnus expression for
py*

,l (August 1828; Magnus 1844), which can be inverted ana-
lytically (Mitchell 1967; Lawrence 2005). But we have here one
other objective, which is to derive an expression for the dew-
point that is not only accurate, explicit, and analytic, but also
derived theoretically.

To this end, we will use the approximations of Rankine
(1866) and Kirchhoff (1858), which assume an ideal gas,
constant heat capacities, and zero specific volume of con-
densates. Following Romps (2021, manuscript submitted to
Quart. J. Roy. Meteor. Soc.), we may refer to this trio of as-
sumptions as the Rankine–Kirchhoff (RK) approximations,
which have been used to derive accurate, explicit, and analytic
expressions for the equivalent potential temperature (Romps
and Kuang 2010; Hauf and Höller 1987; Emanuel 1994), the
quantity conserved by an adiabatically lifted parcel (Romps
2015), and the lifting condensation level (Romps 2017).Here, we
aim to add to that list the dewpoint and frost point.

Using the Rankine–Kirchhoff approximations, we can ar-
rive at the Rankine–Kirchhoff equations for the saturation
vapor pressures (Rankine 1866; Kirchhoff 1858)
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where Ry is the specific gas constant for water vapor; cyy, cyl, cys
are the specific heat capacities at constant volume of water
vapor, liquid water, and solid water, respectively; cpy5 cyy1Ry

is the specific heat capacity of water vapor at constant pressure;
ptrip and Ttrip are the triple-point vapor pressure and temper-
ature, respectively; E0y is the difference in specific internal
energy between water vapor and liquid water at the triple
point; and E0s is the difference in specific internal energy
between liquid water and solid water at the triple point.
Following Romps (2017), a set of optimized values for these
constants are cyy 5 1418 J kg21 K21, ptrip 5 611.65 Pa, Ttrip 5
273.16K, E0y 5 2.3740MJ kg21, E0s 5 0.3337MJ kg21, Ry 5
461 J kg21 K21, cyl5 4119 Jkg21K21, and cys5 1861 Jkg21K21.

Using Eq. (3), Eq. (1) can be inverted to give an explicit and
analytic expression for the dewpoint Td,
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whereW21 is the lowerbranchof theLambertWfunction. Likewise,
using Eq. (4), Eq. (2) can be inverted to give the frost point Tf,
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where W0 is the principal branch of the Lambert W function.
The reason the dewpoint and frost point use different branches
is that cyl 2 cpy and cys 2 cpy have different signs for the choice
of heat capacities used here. If different heat capacities were
used for which cys . cpy, then the lower branch would be used
for the frost point instead.

In the case of the frost point, the value of ec can be very large
and can cause the argument ofW0 to exceed the largest number
that can be represented using the IEEE double-precision
floating-point format, which is about 1.8 3 10308. If the loga-
rithm of the argument exceeds 709 ’ log(10308), then we can
use an approximation for W0,
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whereL15 log(x) and L2 5 log(L1) (Corless et al. 1996). When
L1 exceeds 709, this approximation replicatesW0 with a relative
error that is smaller than double-precision rounding error.

Equations (7) and (8) give the frost point in terms of RHs,
but relative humidity is most commonly stated with respect to

liquid water in the field of atmospheric science. To calculate Tf

from RHl, we can note that py 5RHlpy*
,l5RHspy*

,s, and so
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This relation allows us to convert from RHl to RHs or vice
versa, enabling the calculation of both Td and Tf no matter
which relative humidity is given.

Before we calculate the errors in expressions for the dew and
frost points, let us first estimate the uncertainties from modern
laboratory measurements. We can estimate the empirical un-
certainty in the dewpoint by taking the reported relative un-
certainty in laboratory measurements of the vapor pressure
Dlog py*

,l and dividing by Le/(RyT
2), where Le is the latent heat

of evaporation. (This estimation is used here as an alternative
to propagating errors in the standard way because it is not
known to what degree the reported uncertainties in the vapor
pressures at T and Td are correlated.) Similarly, we can estimate
the uncertainty in the frost point using the Dlogpy*

,s reported for
laboratory measurements and dividing by (Le 1 Lm)/(RyT

2),
where Lm is the latent heat of melting. This procedure gives an
uncertainty of ;0.003K at temperatures around 300K [using
Dlog py*

,l5 23 1024 from Fig. 6.4 of Wagner and Pruß (2002)]
and that grows to ;0.02K at temperatures around 252K [using
Dlog py*

,l5 23 1023 from Table 2 of Beltramino et al. (2020)]
and ;0.03K at temperatures around 180K [using Dlog py*

,s5
53 1023 from Fig. 5 of Wagner et al. (2011)]. Note that 252K
was the lowest temperature measured by Beltramino et al. (2020)
for supercooled water, so this is a conservative lower bound on the
dewpoint uncertainty at lower temperatures. In summary, we see
that uncertainties in laboratorymeasurements lead to uncertainties
in the dew and frost points as high as a few hundredths of a degree.

As mentioned at the beginning, there is one expression for the
dewpoint already in the literature that is analytic, explicit in terms
of temperature and relative humidity, and derivable from theory.
That equation is derived by adding to the RK approximations
the further assumption that all phases of water have the same
specific heat capacity, i.e., cpy 5 cyl 5 cys. In that case, Eq. (3)
reduces to (e.g., Callendar 1911; Murphy and Koop 2005)
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where the latent heat of evaporation is approximated as Le0 5
E0y 1 RyTtrip. Using RHl 5py*

,l(Td)/py*
,l(T) and solving for Td,

we get (Lawrence 2005)
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A similar expression may be obtained for Tf, replacing RHl

with RHs and replacing the latent heat of evaporation with the
approximated sum of the latent heats of evaporation and
sublimation, Le0 1 Lm0 5 E0y 1 E0s 1 Ry. When calculating
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Le0 + Lm0  =  E0v + E0s + RvTtrip.



these expressions, the values used for E0y, E0s, and Ry are the
same as those given above.

The errors in these equal-heat-capacity dewpoint and frost-
point expressions can be calculated by subtracting from them
the dewpoints and frost points obtained (by use of a root
solver) from laboratory measurements of the saturation vapor
pressure. For this purpose, we will use Eq. (10) of Murphy and
Koop (2005) for p*,ly , which fits the empirical data as well or
better (see Fig. 2 ofBeltramino et al. 2020) than the International
Association for the Properties of Water and Steam (IAPWS)
G12-15 formulation (IAPWS 2015), and we will use Eq. (4) of
Wagner et al. (2011) for p*,sy , which was adopted as IAPWS
R14-08 (IAPWS 2011). The dashed curves in Fig. 1 show the
errors in the equal-heat-capacity frost point (left panel) and
dewpoint (right panel) plotted as functions of air temperature
for a variety of relative humidities. Note that the two panels use
different ordinates. For the frost point, the curves are plotted
for values of T such that both T and Td lie between 180 and
273K. For the dewpoint, the curves are plotted for values of
T such that both T and Td lie between 230 and 330K.

The error in the equal-heat-capacity expression for the frost
point is less than or equal to 0.05K, which is the same order of
magnitude as the uncertainty from laboratory measurements. For
the dewpoint, however, the assumption of cpy 5 cyl generates
errors that far exceed the uncertainties from empirical data. For
low relative humidities (less than or equal to about 0.2) or for high
air temperatures (exceeding about 310K, 378C, or 1008F), the
dewpoint error can approach and exceed 0.58–1.08C or 18–28F.

Repeating this calculation for the Rankine–Kirchhoff ex-
pressions in Eqs. (5) and (7) gives the solid curves in Fig. 1. We
see that the errors in the RK dewpoint and RK frost point
are less than 0.04 and 0.07K, respectively. These errors are
the same order of magnitude as the uncertainties from the
laboratory measurements. With maximum errors measured in

hundredths of a kelvin, the Rankine–Kirchhoff expressions for
the dewpoint and frost point are sufficiently accurate for most,
if not all, atmospheric applications.

To give a graphical summary of the Rankine–Kirchhoff dew-
point and frost-point depressions, Fig. 2 plotsmin[T2Td(T, RH),
T 2 Tf (T, RH)] (i.e., the smaller of either the dewpoint

FIG. 1. Errors in the (left) frost point and (right) dewpoint as obtained from the Rankine–Kirchhoff approxi-
mations (solid) or the approximation of equal heat capacities (dashed). Note that the ordinates differ between the
left and right panels. Errors are calculated relative to laboratory measurements of vapor pressure summarized by
the expressions ofMurphy andKoop (2005) for liquid andWagner et al. (2011) for ice. See the text for a comparison
of these errors to the uncertainties from laboratory measurements.

FIG. 2. Minimum of the dewpoint depression and frost-point
depression plotted as a function of temperature and relative hu-
midity (with respect to the saturation vapor pressure over liquid for
T $ 273.16K and over solid for T , 273.16K). The dashed line
separates the regions where, as the air is cooled, dew forms first
(red) and frost forms first (blue).
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depression or the frost-point depression) as a function of
temperature and relative humidity (with respect to the sat-
uration vapor pressure over liquid for T$ 273.16 K and over
solid for T , 273.16 K). The kink in the curves at a temper-
ature of 273.16 K marks the transition from relative humidity
with respect to solid (below the kink) and with respect to
liquid (above the kink). A second locus of kinks, marked by
the dashed line, occurs where the dewpoint depression and
frost-point depression are equal. Above the dashed line, dew
forms before frost as the air is cooled, and vice versa below
the dashed line, assuming readily available surfaces for both
condensation and deposition. Code to evaluate Eqs. (5) and
(7) are available on the author’s website in R, Python,
FORTRAN, and MATLAB.
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