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1.1 Introduction

These lecture notes cover the theory of tropical moist convection. Many simplifications
are made along the way, like neglecting rotation and treating the atmosphere as a two-
dimensional fluid or even reducing the atmosphere to two columns. We can gain an
immense amount of insight into the real atmosphere by studying these toy models,
including answers to the following questions: what is the dominant energy balance
in the tropical free troposphere; what sets the temperature structure of the tropical
free troposphere; what happens to the pulse of heating deposited into the atmosphere
by a rain cloud; why does the tropical atmosphere have the relative-humidity profile
that it does; and what sets the amount of energy available to storms? These notes
attempt to give the first-order answers to these questions in a format that is accessible
to beginning graduate students. We begin with a discussion of atmospheric energy.

1.2 Dry thermodynamic equations

Fluids are governed by conservation laws: conservation of mass, conservation of energy,
and conservation of momentum. Each of these conservation laws, when written down
as an equation, prognoses (i.e., predicts or governs) the evolution of the fluid’s mass,
energy, and momentum, respectively. Sometimes, we write down those governing equa-
tions in terms of closely related variables. For example, we might rewrite the equation
for energy in terms of an equation for temperature T . Or, we might rewrite an equa-
tion for momentum as an equation for velocity ~u. But, no matter how the equations
may be written in the end, they are all derivable from equations that plainly state the
conservation of mass, energy, and momentum.

The best way to derive these conservation equations is to start in Eulerian form.
An equation in Eulerian form has a term that is an Eulerian time derivative of some
quantity. An Eulerian time derivative is just a partial derivative with respect to time,
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Fig. 1.1 Imaginary box, fixed in space. You may think of this box being infinitesimally small.

We derive equations describing the mean quantities of the fluid in this box, as the fluid passes

through this box. Eventually, we take the limits of Lx, Ly and Lz to zero, such that the box

reduces to a single fixed point in space.

∂/∂t. (It may seem silly to give ∂/∂t a special name like “Eulerian time derivative”,
but this is necessary to distinguish it from the “Lagrangian time derivative” d/dt,
which is also commonly used in the study of fluids.)

In Eulerian form, we can write any conservation law as

Storage rate of X in the box + Export rate of X out of the box

= Sources of X in the box , (1.1)

where X is either mass, momentum in one of the three independent directions, or
energy. Here, the “box” is some box-shaped region – perhaps a cube – that has a fixed
size, shape, orientation, and position with respect to the chosen coordinate system
(typically, x, y, and z). It is most important that this box be stationary: the fluid
can and will pass through the box, but the box that we consider must not move. For
simplicity, we will imagine a box whose edges are parallel to the x, y, and z axes and
that have lengths Lx, Ly, and Lz, respectively; see Figure 1.1.

In the equation above, the “storage rate” or “tendency” is the rate at which the
amount of X in the box is increasing. The “export rate” or “divergence” is the rate at
which X is being carried by the fluid out of the box by passing through the walls of
the box. The “sources” are any addition of X to the box (or, if negative, subtraction
of X from the box) through means other than being carried into or out of the box by
the fluid flow.

To write out equation (1.1) in more detail, note that the amount of X in the box
is equal to the volume of the box V times the density of X. So, the storage rate is1 ∂t
of the volume of the box V times the density of X. But, since V is constant in time,

Storage rate of X in the box = V ∂t(density of X) .

The export rate of X is equal to the net rate at which X is carried outwards across
the faces of the box. Let us consider the two faces whose normals are aligned with the

1Here and throughout, the partial derivatives ∂/∂t, ∂/∂x, ∂/∂y, and ∂/∂z will be abbreviated as
∂t, ∂x, ∂y , and ∂z . This is simply a matter of convenience: it reduces clutter and saves ink.
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x axis. The rate at which X passes through one of those faces is equal to the area of
the face LyLz times2 u times the density of X. The net export across the two faces
with x̂ normals is then

(LyLz)
[

(u× density of X)|+Lx/2 − (u× density of X)|−Lx/2

]
,

where the subscripts −Lx/2 and +Lx/2 indicate that the expressions should be eval-
uated at the location of these faces, which are at positions −Lx/2 and +Lx/2 relative
to the box’s center. Now, if we imagine that our box is small compared to the spatial
variations in u or the density of X, then we can write this as

(LyLz)

[
Lx

(u× density of X)|+Lx/2 − (u× density of X)|−Lx/2

Lx

]
= (LyLz) [Lx∂x(u× density of X)]

= V ∂x(u× density of X) .

Similarly, the net exports through the two ŷ-normal and two ẑ-normal faces are

V ∂y(v × density of X)

and
V ∂z(w × density of X) ,

respectively. Altogether, the net amount of X being exported through the faces of the
box is

Export rate of X out of box = V ~∇ · (~u× density of X) .

The only thing left to figure out, then, is the set of sources for X. For mass, there
is none:

Sources of mass to the box = 0 .

Although the diffusive fluxes of mass, momentum, and energy can be important, es-
pecially near the surface, we will ignore diffusion for simplicity. For momentum, there
are gravity and pressure forces:

Sources of momentum to the box = V ~g − V ~∇p .

Here, ~g = (0, 0,−9.81 m s−2) is the gravitational acceleration vector and p is the fluid
pressure. Noting that the pressure of a fluid is isotropic (the same in all directions) and

recalling that pressure is simply force per area, the pressure-gradient term −V ~∇p in
the equation above can be derived by considering the forces on the faces of the box. For
energy (by which I mean the sum of internal energy, kinetic energy, and gravitational
potential energy), the sources that we need to worry about are radiation and pressure
work:

Sources of energy to the box = V Q− V ~∇ · (p~u) .

Here, Q is the net radiative heating per volume with units of W m−3 and the last term
represents the energy added to the box by being pushed by adjacent fluid at the faces

2Here, we adopt the standard meteorological convention of referring to the three components of
the fluid velocity by u, v, and w, corresponding to x, y, and z axes, respectively.
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of the box. Like the pressure-gradient term in the momentum equation, the −V ~∇·(p~u)
term can be derived by considering the force-times-distance work performed on the
parcel of air at the faces of the box.

Putting it all together, denoting the density of mass, momentum, and energy by
ρ, ρ~u, and ρE, and dividing by the constant V , we get

∂tρ+ ~∇ · (ρ~u) = 0 (1.2)

∂t(ρ~u) + ~∇ · (ρ~u~u) = ρ~g − ~∇p (1.3)

∂t(ρE) + ~∇ · (ρE~u) = Q− ~∇ · (p~u) , (1.4)

where E is the specific3 energy of the fluid and the pressure is specified by the ideal
gas law to be p = RρT , where R is the specific gas constant of air.

The energy equation (a.k.a., the thermodynamic equation) plays a prominent role
in these lectures because energy is tightly connected to the topics of buoyancy and
atmospheric convection. Although there are many different “energy” or “thermody-
namic” variables for dry air, they are all functions of4 temperature T and also, possibly,
pressure p or height z. Therefore, we can write a general thermodynamic variable for
dry air as f(T, p, z). At a given height, the buoyancy b of a dry parcel in a dry atmo-
sphere is defined in terms of the temperature of the parcel Tp and the temperature of
the environment at the same height Te as

b = g
Tp − Te
Te

, (1.5)

where g ≈ 10 m s−2 is the magnitude of the gravitational acceleration. By this equa-
tion, a dry parcel is neutrally buoyant – i.e., will remain at that height in a stratified
atmosphere if initially motionless – if and only if its temperature equals the tem-
perature of the environment at the same height. Since the heights of the parcel and
environment are the same, and since the parcel can be assumed to be the same pressure
as its immediate environment so long as it is moving slowly compared to the speed of
sound, a dry parcel is neutrally buoyant if and only if it has the same T , p, and z as its
environment. In other words, a dry parcel in a dry environment is neutrally buoyant if
and only if the parcel and its environment have the same energy (measured in terms
of whatever thermodynamic variable we want). It is this tight connection between
buoyancy and energy that puts energy front and center when we study convection.

1.2.1 Energy E = cvT + u2/2 + gz

What is the E in equation (1.4)? For a dry atmosphere, the energy in the box is a
sum of three types: internal energy, kinetic energy, and gravitational potential energy.
Therefore, E can be written as

E = cvT︸︷︷︸
internal

+ u2/2︸︷︷︸
kinetic

+ gz︸︷︷︸
gravitational

, (1.6)

3The term “specific” means “per mass”. Therefore, E has units of J kg−1.
4For one of the thermodynamic variables, there is an explicit dependence on the wind speed, but

as we will see, this dependence is negligible and can be ignored for most purposes.
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where cv ≈ 700 J kg−1 K−1 is the specific heat capacity of air at constant volume, u
is a shorthand5 for |~u| =

√
u2 + v2 + w2. Note that we made choices about what con-

stitutes “zero energy”. For the internal energy, we have chosen “zero internal energy”
to be at absolute zero. For the kinetic energy, we have chosen “zero kinetic energy” to
be when ~u = 0 in our chosen reference frame. For the gravitational potential energy,
we have chosen “zero gravitational potential energy” to be at z = 0 in our chosen ref-
erence frame. We are always free to make these choices, or for that matter, any other
set of choices. To see why, note that we can multiply equation (1.2) by any constant
we want and add it to equation (1.4); that effectively adds that constant to E, which
can be interpreted as adding that constant to any one of the internal, kinetic, and
gravitational energies, thereby changing where their zero-point values occur.

To understand the Earth’s tropical atmosphere, we must understand its energetics.
In particular, we need to understand how air parcels are able to move up and down in
a stratified atmosphere. Moving laterally in the tropics is pretty simple, but moving
up and down requires an addition or removal of energy, either through phase changes
of water or through radiative heating. Since that up-and-down movement is utterly
critical to how the atmosphere works, we need to understand its energetics.

Regarding the energetics, the simplest thing we can try to understand is the differ-
ence in energy between air at the bottom of the troposphere and air at the top of the
troposphere. Let us consider a static atmosphere; this lets us ignore the kinetic piece,
whose contribution is small even in the real atmosphere6. For our comparison, we will
use nice, round numbers. For the surface air, we will use T = 300 K and z = 0. For
air at the tropopause, we will use T = 200 K and z = 15 km. See Figure 1.2. At these
two heights, we have:

E @ surface = 700× 300 + 10× 0

= 210,000 J kg−1

E @ tropopause = 700× 200 + 10× 15000

= 290,000 J kg−1

∆E = 290,000− 210,000 = 80,000 J kg−1 .

Therefore, the tropopause air is higher in energy by 80,000 J/kg.
Is this the right way to calculate the energy difference? The answer to that depends

on what you are hoping to learn. If we are interested in the movement of air up and
down in the atmosphere, the answer is no: this difference in E is not the energy that
we must extract (by, say, radiative cooling) from a parcel at the tropopause to make it
descend in a neutrally buoyant way down to the surface. Why? There is the pressure

5Note that u is used for both the x component of the wind and for the magnitude of the velocity.
This overloading of the variable u is typical. Context should make it clear which meaning is being
used.

6The highest winds in the atmosphere are found in the upper-tropospheric jets, which can hit
speeds of 100 m/s (∼200 mph). That corresponds to a specific kinetic energy of 1002/2 = 5000 J/kg,
which is equal in energy to a temperature increment of about 7 K since cv = 700 J kg−1. Most
windspeeds, however, are much smaller than this. Even a 50 m/s wind (∼100 mph) corresponds to
an equivalent temperature increment [(50 m/s)2/2/cv ] that is less than 2 K. Therefore, we can safely
ignore the kinetic piece in our order-of-magnitude energy calculations.
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tropopause, z = 15 km, T = 200 K

surface, z = 0 km, T = 300 K

Static atmosphere

Fig. 1.2 For the comparison of the energies of air at the surface and tropopause, we will

assume that the tropopause is at 15 km and that the temperatures of the surface air and

tropopause air are 300 and 200 K, respectively.

term on the right-hand side of the governing equation for energy, −~∇ · (p~u), that
prevents us from interpreting ∆E in this way.

1.2.2 Internal energy cvT

What about internal energy? Is it the “right” way to think about the energy difference
between the lower and upper troposphere? To find out, we need to derive the governing
equation for internal energy. This will not be a new equation; it can be derived from
the equations we already have.

To get there, it will make things easier to first define the “Lagrangian derivative”
d/dt, which is related to the Eulerian derivative ∂/∂t by

d

dt
= ∂t + ~u · ~∇ . (1.7)

The interpretation of the Lagrangian derivative is that it gives the rate of change
following a parcel of fluid. Contrast this with the Eulerian derivative, which gives the
rate of change at a fixed point in space.

The mass equation (a.k.a., the continuity equation) in (1.2) can be rewritten in a
slightly different form that we will find useful. Also, by using the continuity equation
on the momentum and energy equations, they, too, can be put into a similar form.
The result of these efforts is

∂tρ+ ~u · ~∇ρ = −ρ~∇ · ~u

∂t~u+ (~u · ~∇)~u = ~g − 1

ρ
~∇p

ρ∂tE + ρ~u · ~∇E = Q− ~∇ · (p~u) .

These equations are similar in the sense that their left-hand sides all have an Eulerian
derivative of something plus ~u · ~∇ operating on that same thing. By the definition of
the Lagrangian derivative in equation (1.7), this can be written as
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d

dt
ρ = −ρ~∇ · ~u (1.8)

d

dt
~u = ~g − 1

ρ
~∇p (1.9)

ρ
d

dt
E = Q− ~∇ · (p~u) . (1.10)

Equation (1.9) can be turned into an equation for kinetic and gravitational potential
energy by dotting with ~u,

d

dt

(
1

2
u2 + gz

)
= −1

ρ
~u · ~∇p .

Multiplying by ρ and subtracting from equation (1.10) gives

ρ
d

dt
(cvT ) = Q− p~∇ · ~u . (1.11)

Let us compare the surface and tropopause. At the surface, T = 300 K. At the
tropopause, T = 200 K. Therefore,

cvT @ surface = 700× 300

= 210,000 J kg−1

cvT @ tropopause = 700× 200

= 140,000 J kg−1

cv∆T = 140,000− 210,000 = −70,000 J kg−1 .

The tropopause air is lower in internal energy by 70,000 J/kg.
Does this difference in internal energy tell us about the energy that must be added

or removed to bring a tropopause parcel down to the surface? Certainly not. If we
believed that, then we would think that we have to heat a tropopause parcel to get it
down to the surface. This is not right. The problem is in the remaining pressure term:
−p~∇ · ~u (pdV work).

1.2.3 Enthalpy h = cpT

Let us add ρd(RT )/dt to both sides of equation (1.11). On the left-hand side, this
gives ρd(cpT )/dt, where cp = cv + R ≈ 1000 J kg−1 is the specific heat capacity at
constant pressure. The right-hand side becomes

Q− p~∇ · ~u+ ρ
d

dt
(RT )

= Q− p~∇ · ~u+
d

dt
(ρRT )−RT d

dt
ρ

= Q− p~∇ · ~u+
d

dt
p+RTρ~∇ · ~u

= Q− p~∇ · ~u+
d

dt
p+ p~∇ · ~u

= Q+
d

dt
p .
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In the third line, we have used equation (1.8) on the last term. In the fourth line, we
have used the ideal gas law. The result is the enthalpy equation,

ρ
d

dt
h = Q+

d

dt
p , (1.12)

where h = cpT is the specific enthalpy for dry air. Recall that “specific” means per
mass. What is enthalpy? Enthalpy is the sum of internal energy plus pV . For a box of
volume V and mass M , its specific pV is pV/M . This equals p/ρ since M/V = ρ, and
p/ρ = RT by the ideal gas law. Therefore, by adding d(RT )/dt to both sides of the
internal-energy equation, we changed our “X” from internal energy (which, per mass,
is cvT ) to enthalpy (which, per mass, is cpT ).

Let us compare the surface and tropopause. Again, the surface and tropopause
temperatures are 300 and 200 K, respectively. Therefore,

cpT @ surface = 1000× 300 (1.13)

= 300,000 J kg−1 (1.14)

cpT @ tropopause = 1000× 200 (1.15)

= 200,000 J kg−1 (1.16)

cp∆T = 200,000− 300,000 = −100,000 J kg−1 . (1.17)

The tropopause air is lower in internal energy by 100,000 J/kg.
This is still not the relevant thermodynamic variable for calculating the cooling

needed to bring a parcel to the surface. We still have a pesky pressure term on the
right-hand side of equation (1.12): dp/dt, which corresponds to the pressurization of
the parcel.

1.2.4 Potential temperature θ

To get rid of that pesky pressure term, let us divide both sides of equation (1.12) by
ρT . That produces

cp
d

dt
log(T ) = Q/(ρT ) +R

d

dt
log(p) .

This can be written as

cp
d

dt

[
log(T )− R

cp
log(p/p0)

]
=

Q

ρT
,

and then as
d

dt
log(θ) =

Q

cpρT
,

or as
d

dt
θ =

θ

cpρT
Q . (1.18)

Here, θ is called the potential temperature, which is defined by

θ = T

(
p0

p

)R/cp

. (1.19)
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The variable θ is the temperature that a parcel of air (with an initial pressure p and
temperature T ) would have if adiabatically compressed or expanded to pressure p0. It
is conventional to set p0 = 1 bar = 105 Pa, which approximates the surface pressure.
Note that we finally have an equation with no pressure terms on the right-hand side.
As we cool a parcel to bring it from the tropopause to the surface over time ∆t,
equation (1.18) tells us that the change in its potential temperature is

∆θ =
1

cp

∫ ∆t

0

dt
θ

T

Q

ρ
. (1.20)

Our ultimate goal is to find the specific cooling (J kg−1) that is required to bring
a tropopause parcel down to the surface. By the definition of Q, which is net heating
per volume per time, the net specific heating of the parcel during time ∆t is∫ ∆t

0

dt
Q

ρ
.

For the sake of intuition, it is sometimes convenient to talk about a heating or cooling
in terms of Kelvins. When we refer to “x K of heating”, we usually mean “the Joules
per kilogram of heating that would raise the temperature of an air parcel by x K at
constant pressure”. These are simply related by a factor of cp. Specifically, we have
the following correspondence:∫ ∆t

0

dt
Q

ρ
[J/kg] ⇐⇒ 1

cp

∫ ∆t

0

dt
Q

ρ
[K] .

Note that the right-hand side of (1.20) is not quite equal to this: equation (1.20) has
a factor of θ/T inside the integral. Nevertheless, we can approximate that factor.

Let us compare the surface and tropopause. At the surface, T = 300 K and p = 105

Pa, so θ = 300(1)R/cp = 300 K. At the tropopause, T = 200 K and p = 0.13× 105 Pa,
so θ = 200(1/0.13)R/cp = 360 K. We do not know the time-averaged θ/T , but we can
approximate θ and T in that ratio as averages of their tropopause and surface values,
which are (360 + 300)/2 = 330 K and (200 + 300)/2 = 250 K, respectively. Then,

∆θ =
1

cp

∫ ∆t

0

dt
θ

T

Q

ρ

≈ 1

cp

330

250

∫ ∆t

0

dt
Q

ρ

⇒ 1

cp

∫ ∆t

0

dt
Q

ρ
≈ 250

330
(360− 300)

≈ 45 K .

This is roughly the amount of cooling needed to bring a tropopause parcel down to
the surface. We were forced to make an approximation, however, so we cannot trust
this to be quantitatively exact.
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1.2.5 Entropy cp log θ

It is worth noting at this stage that cp log θ is the entropy of dry air. We can derive
its governing equation from (1.18), which gives

d

dt
(cp log θ) =

Q

ρT
.

Note the familiar “heating divided by temperature” term on the right-hand side. And,
note this equation does not contribute any new information not already present in our
governing equations for mass, momentum, and energy; in fact, we have derived this
entropy equation purely from the conservation of mass, momentum, and energy.

1.2.6 Dry static energy DSE = cpT + gz

Potential temperature is nice because it is conserved for adiabatic (Q = 0) processes,
but with its weird exponent and a source that is not exactly equal to specific heating,
it is inconvenient. For example, in the calculation of the cooling needed to bring a
parcel of air from the tropopause to the surface, we could only get an approximate
answer when evaluating equation (1.18) with pencil and paper. A more convenient
equation can be obtained from the enthalpy equation so long as we do not mind
invoking hydrostatic balance. Assuming that the atmosphere is hydrostatic and that
we cool or heat parcels slowly enough that they are always at their equilibrium height
(i.e., their density equal to the environment’s density), then

d

dt
p = ∂tp+ ~u · ~∇p

= w∂zp

= −wρg

= −ρ d
dt

(gz) .

Here, we are simplifying matters by assuming that the atmosphere has no horizontal
or temporal variations in pressure (a good approximation for the tropics), and we have
used hydrostatic balance in the third line to equate ∂zp and −ρg. Using this result to
rewrite the dp/dt term in equation (1.12), the enthalpy equation becomes

ρ
d

dt
(cpT ) = Q− ρ d

dt
(gz) ,

or
d

dt
DSE = Q/ρ , (1.21)

where DSE = cpT +gz is the dry static energy. Now, we have a very clean relationship
between a function of the parcel’s state (DSE) and the specific heating (Q/ρ).

Let us compare the surface and tropopause. At the surface, T = 300 K and z = 0.
At the tropopause, T = 200 K and z = 15 km. Therefore,
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DSE @ surface = 1000× 300 + 10× 0

= 300,000 J kg−1

DSE @ tropopause = 1000× 200 + 10× 15000

= 350,000 J kg−1

∆DSE = 350,000− 300,000 = 50,000 J kg−1 .

The tropopause air is higher in dry static energy by 50,000 J/kg. Dividing by cp = 1000
J kg−1 K−1, this corresponds to 50 K. So, we see that our approximate calculation of
45 K from the θ equation was pretty close to the actual answer.

Needless to say, DSE is super useful. It has gotten us the amount of cooling needed
to bring a parcel from the tropopause to the surface, or, vice versa, the amount of
heating to bring a parcel from the surface to the tropopause. In the absence of heating,
DSE should be approximatley conserved. For example, if we lift a parcel from the
surface to the tropopause without any heating, then its original DSE of 30× 104 J/kg
is conserved, so the temperature becomes (30× 104 − 10× 15000)/1000 = 150 K. Not
surprisingly, that is 50 K less than the temperature of the tropopause air; this is the
50 K that must be added as we lift the parcel if we want it to be neutrally buoyant at
the tropopause.

Note that we can restate all of this very simply. Conservation of DSE implies that
dT/dz = −g/cp = −10 K/km. This is just the dry adiabatic lapse rate, which is
well-known by all atmospheric scientists.

But, we can not use conservation of DSE blindly. If we lift the surface parcel to 40
km in the stratosphere, what will the temperature of the parcel be? As we saw above,
a parcel with a temperature of 300 K at the surface has a DSE of 300 kJ kg−1. At 40
km, the parcel’s DSE would be

DSE = 1000T + 10× 40000 ,

where T is the unknown temperature of the parcel there. To solve for T , we use con-
servation of DSE, which tell us that this expression is equal to 300 kJ kg−1. Therefore,

1000T + 400000 = 300000 (1.22)

⇒ 1000T = −100000 (1.23)

⇒ T = −100 K . (1.24)

Negative temperature! What went wrong? Can we not lift a parcel to 40 km? Of course
we can. That is a totally physical thing to do. And, since negative temperatures are
meaningless, it is conservation of DSE that must have failed. We will find why out in
section 1.7.

1.3 Tropospheric energy balance

Clear air cools radiatively through infrared emission by about 1 K per day (10−5 K/s).
Since there are 10 tons (104 kg) of air overlying each square meter of surface, that
corresponds to about
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Fig. 1.3 A schematic of the clear-sky thermodynamic balance from the perspective of θ or

DSE. Clear-sky radiative cooling moves the parcel to the left in this diagram. Since θ and

DSE are conserved for adiabatic processes, descent of the parcel moves the parcel downward

in this diagram. In a steady state, Lagrangian parcels move, but they move along the existing

thermodynamic profile, which keeps the profile constant in time.

Mcp

(
1

cp

Q

ρ

)
= 104 × 1000× 10−5 = 100 W m−2 .

That is a lot of cooling. How is this balanced? By the definition of the Lagrangian
derivative in equation (1.7), we know that

d

dt
DSE = ∂tDSE + u∂xDSE + v∂yDSE + w∂zDSE .

In the tropical free troposphere, ∂tT is nearly zero, as are ∂xT and ∂yT , which are
often approximated as zero in the weak temperature gradient (WTG) approximation
(Sobel et al., 2001). Therefore, equation (1.21) can be approximated as

w∂zDSE ≈ Q/ρ .

In other words, radiative cooling of clear air is balanced by descent of the clear air
(vertical advection of higher DSE from aloft). This is illustrated in Figure 1.3. We can
draw the same diagram in terms of T . This is shown in Figure 1.4.

Note that the clear air is everywhere sinking. What makes that possible? Where
does that air come from? Why is there a seemingly endless source of air at high
altitudes? The answer is that the high-altitude air is supplied by clouds! Clouds are
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Fig. 1.4 A schematic of the clear-sky thermodynamic balance from the perspective of T .

Clear-sky radiative cooling moves the parcel to the left in this diagram. Since an adiabatically

descending parcel has a dry-adiabatic lapse rate g/cp = 10 K/km that is larger than −∂zT ,

descent of the parel moves the parcel down and to the right in this diagram. In a steady state,

Lagrangian parcels move, but they move along the existing temperature profile, which keeps

the profile constant in time.

the only things that can power their way up through the atmosphere to dump air
at high altitudes. Clouds, therefore, are fundamental to the mass balance and energy
balance of the troposphere. In these lectures, the word “cloud” will refer exclusively to
precipitating cloud updrafts. In the taxonomy of clouds, these are the cumulonimbus
and the precipitating cumulus. While non-convecting clouds like stratus and cirrus help
set the overall temperature of the planet through their interaction with radiation, they
do not play the same fundamental role in the energy budget of the tropical troposphere
that precipitating cloud updrafts do.

Convecting clouds typically rise so quickly that radiation does not have time to
act on them in any significant way. Instead, the energy balance in a column of rising
cloud is between vertical advection and latent heating. Denoting convecting cloud by
a subscript c, we can think of this as

wc∂zDSE = Qc,condensation/ρ > 0 .

Now, some of the condensates that form within the cloud end up evaporating in the
environment, either because cloudy air detrains into the environment and evaporates
or because rain falls through the environment and evaporates. This produces an ad-
ditional cooling of the environment, so we should write the DSE balance in the envi-
ronment, denoted by a subscript e, as
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we∂zDSE =
[
Qe,radiation +Qe,evaporation

]
/ρ < 0 .

The atmosphere’s energy cycle works like this: the Sun heats the ocean, the ocean
cools itself by evaporating water, the resulting water vapor is used by clouds to power
their way to the upper troposphere, that causes subsidence everywhere else by continu-
ity, and that adiabatic heating by subsidence is matched by radiative and evaporative
cooling. Sounds simple enough, but there are a lot of questions:

• What sets the value of ∂zDSE or, equivalently, T (z)?

• What sets Qe,radiation or, equivalently, what sets the distribution of humidity?

• What sets Qe,evaporation or, equivalently, what is the fate of condensed water?

• How is Qc,condensation affected by the turbulent entrainment of dry air?

These are some of the biggest unresolved questions in atmospheric science.

1.4 How do global climate models work?

In Earth’s atmosphere, cloudy updrafts have a typical width of around 1 km. Global
climate models (GCMs), on the other hand, have a typical grid spacing that ranges
from 25–200 km. Therefore, the GCM grid spacing is much too large to resolve cloudy
updrafts, at least not motions that faithfully represent true moist convection.

To understand how GCMs deal with this problem, it is sufficient to consider a
single column of a GCM. In fact, a single column of a GCM is often isolated and
used for research purposes all on its own. Isolated in this way, we call such a thing
a single-column model (SCM). But how can an SCM possibly capture the dominant
energy balance in the clear air? As we have learned, the radiative cooling of clear air
is balanced by having the clear air sink. In an SCM, however, there is nowhither for
the air to go, and nowhence to come.

Since the cloudy updrafts cannot be resolved explicitly, their effects must be param-
eterized. Fortunately, in addition to being small, cloudy updrafts also occupy a small
fraction of area: a typical fraction of area that is occupied by precipitating cloudy
updrafts is on the order of 10−3–10−2. This small area fraction is a consequence of the
disparate rates of heating and cooling in precipitating updrafts and the environment.
The radiative cooling of the environment is about 1 K/day, whereas a deep-convective
cloud traverses the depth of the troposphere by adding 50 K to its DSE from latent
heating in about one hour; these two rates of heating (1 K/day and 50 K/hour = 1200
K/day) differ by three orders of magnitude. Therefore, to have an energy balance, the
area fraction of deep convective updrafts must be, on average, about 10−3. Of course,
there are large-scale regions of the tropics where the area fraction of precipitating
updrafts exceeds 10−3, made possible by the export of energy to neighboring regions
of the tropics, so an area fraction of 10−2 is possible. Either way, the area fraction
of precipitating cloud updrafts is small. As a consequence, there are two conceptual
frameworks that we could use for parameterizing cloudy updrafts in an SCM. Both
take advantage of the fact that cloudy updrafts occupy a very small area.

In the first framework, we let the GCM grid column represent just the clear air, and
let convection be an appropriate source or sink of air at each height. This is depicted in
Figure 1.5a, in which a blue tube represents cloudy air being removed from the lower
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Fig. 1.5 Two possible frameworks for incorporating moist convection into a GCM grid col-

umn. (a) In the first framework, we think of all of the air in the grid column as being clear

environmental air, and we imagine that the convection is a sink and source of mass through-

out the column, which we can visualize as cloudy air moving upward through tubes outside

the grid column. (b) In the second framework, we think of the air in the grid column as

including both the clear environmental air and moist convection, so the tube carrying cloud

updrafts lies within the grid column. This second framework is the one used in most, if not

all, GCMs.

part of the clear-air-only grid column and deposited into the upper part of the column.
Let us define the mass flux of cloudy air M as the kilograms of air per second that
go up the tube divided by the horizontal area of the grid column. By mass continuity,
the vertical velocity w of the air in the grid column in between the tube’s inlet and
outlet must be given by

w = −M/ρ . (1.25)

In a steady state, this subsidence must be balanced energetically by radiative and
evaporative cooling. Therefore, the vertical velocity of the column is related to those
processes by

w∂zDSE = (Qradiation +Qevaporation) /ρ . (1.26)

In this first framework for parameterizing convection in a GCM, the convection must
be parameterized in two places: the M in the mass equation and the Qevaporation in the
energy equation. (In practice, convection must also be parameterized in the momentum
and humidity equations, but we are ignoring those for simplicity.) Do not be confused
by the fact that there are two equations here for w. The way to think about this is that,
in a steady state, the convection is governed by Qradiation: to achieve that steady state,
the convection is providing the right M and Qevaporation to satisfy both equations.

In the second framework, we let the GCM grid column represent an average over
all the air: cloudy updrafts and clear air. This is depicted in Figure 1.5b, in which a
blue tube representing the cloudy updrafts is within the grid column. In this second
framework, the vertical velocity w, which now represents an average of cloudy and
clear, must be zero in a steady state: there can be no net vertical movement of mass
in a steady-state closed box. Therefore,
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w = 0 . (1.27)

If w = 0, how is energy conservation satisfied? Even though there is no net vertical
movement of mass, 99–99.9% of the air in the grid column is descending at levels
between the tube’s inlet and outlet. This is because the tube itself (the cloudy updrafts)
occupy only 0.1–1% of the horizontal area. So, the mass flux in the tube is still causing
the vast majority of the column to sink even though it does not register in the column’s
w. The energy balance is now

0 = Qradiation +Qevaporation +Qsubsidence , (1.28)

where
Qsubsidence = M∂zDSE .

Since the vertical velocity of the clear environment is we = −M/ρ by mass conser-
vation, this is basically the same as equation (1.26), but written with the subsidence
term on the right-hand side. In this second framework, the convection must be param-
eterized in only one place: the sum of Qevaporation +Qsubsidence, which is the convective
tendency for dry static energy.

To the best of the author’s knowledge, all GCMs are written with the second
framework in mind, depicted in Figure 1.5b. This has the advantage of treating the
cloudy updrafts as contained within the grid column (as they are in reality), but it has
the disadvantage of hiding a lot of advection. In an SCM, stuff in the column (water
vapor, trace gases, momentum) must be advected downward by the convective param-
eterization. And advection is one of the hardest things to do well in any numerical
simulation of fluids. So, it is important to be aware that the dynamical core (dycore,
for short) is not the only piece of a GCM responsible for the challenging numerical
task of advecting fluid.

With either approach, the balance that is achieved in this single column is referred
to as radiative-convective equilibrium (RCE). As its name implies, this is a steady
state in which radiative cooling is balanced with convective heating. Typically, this
refers to solutions in which there is no net ascent in the column (i.e., for approach
2, w = 0). RCE is an excellent starting point for understanding the structure of the
tropical atmosphere, and we will study RCE further in sections 1.10 through 1.13.

1.5 Rigid-lid gravity waves

As opposed to an SCM, a column in a GCM has neighbors so it is no longer “single”.
And, since a grid column can import and export mass through its lateral boundaries, its
w is no longer required to be zero even in a steady state. If there is a lot of cloudy mass
flux in the column, then w will be positive, indicating that the column is ascending
on average. If there is very little cloudy mass flux, then w will be negative (due to
the fact that the environmental air is subsiding to balance the radiative cooling). To
a first approximation, we can think of the clear air as descending at the same speed
everywhere in the free troposphere, so it is the variation in cloud ascent that causes a
column’s w to have one sign or the other.

For example, consider the Hadley cell. The deep tropics has, on average, more
cloudy ascent than clear-air descent, so the average w is positive there. Nevertheless,
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Fig. 1.6 Schematic of the Hadley cell. In the deep tropics, cloudy updrafts move air rapidly

from the lower troposphere to the upper troposphere. That air then descends throughout the

deep tropics and subtropics. Even though the area-averaged vertical velocity w is positive in

the deep tropics, the vast majority of the air in the deep tropics is descending.

the vast majority of the air in the deep tropics is descending because the area fraction
of convection is small. In the subtropics, the average w is negative because there is
relatively little cloudy mass flux. On average, therefore, the deep tropics imports air
at low altitudes and export air at high altitudes, and vice versa for the subtropics. See
Figure 1.6 for a schematic of the Hadley cell. Note that the Hadley cell is not simply a
pair of conveyor belts; instead, air is pumped into the upper troposphere of the deep
tropics by moist convection, and that air then descends throughout the deep tropics
and subtropics.

This description is appropriate for a steady state, but what happens if a column of
the atmosphere has a sudden surplus or deficit of convection? How does it communicate
that to all the other columns of air in the tropics to establish a new circulation? Con-
sider a two-dimensional atmosphere (x and z) that is split up into adjacent columns.
Imagine that, initially, w is zero in each column; in other words, the upward cloudy
mass flux in each column is exactly balanced by the downward flux of environmental
air. Then, imagine that one of the columns briefly has more moist convection than
normal. What happens? By mass conservation, the environmental air in that column
must briefly descend more than normal. That puts the subsidence out of balance with
the radiative cooling, causing the column to heat up. Using equation (1.21) for DSE,
this is expressed mathematically as

ρ∂tDSE = Qradiation +Qevaporation +M∂zDSE > 0 ,
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which is caused by M briefly exceeding its steady-state value of

−(Qradiation +Qevaporation)/∂zDSE .

Now, the column is warmer than its surroundings. Recall that the environmental
air occupies 99-99.9% of the column, so the temperature of the column is basically
the same thing as the temperature of the environment: if the column has a warm
anomaly, that means the environment has a warm anomaly. Since warm air rises, a
circulation develops between the column and its nearest neighbors, allowing the column
to have w > 0 through a brief ascent (or a brief decrease in the descent rate) of the
environmental air. That brief ascent causes the column to cool because ascent advects
the column’s air up the DSE gradient, i.e., for adiabatic ascent (w > 0), the equation
∂tDSE = −w∂zDSE tells us that ∂tDSE < 0. Of course, by mass conservation, this
means that the column has exported some air laterally in the upper troposphere (i.e.,
near the tropopause) and imported some air laterally in the lower troposphere (i.e.,
near the surface). This is only possible if its neighboring columns descend, i.e., have
w < 0. So, their environmental air warms up a bit. Being warmer, they now want to
ascend, and they do, but that causes their neighbors to descend, and so on. This is a
gravity wave.

Describing gravity waves in a compressible atmosphere with a realistic stratifica-
tion is a pain in the neck. Fortunately, we can work with a simplified system to get
some physical intuition for these waves. The simplest system with gravity waves is
the 2D shallow-water system. But, such a system does not allow us to think about
vertical structure and vertical propagation of waves. For that, we need to work with a
Boussinesq fluid.

The Boussinesq equations describing hydrostatic linear perturbations to a two-
dimensional, nonrotating, stratified fluid at rest are

∂tu = −∂xp
ρ0

(1.29a)

0 = −∂zp
ρ0

+ b (1.29b)

∂tb = −N2w +Q (1.29c)

0 = ∂xu+ ∂zw , (1.29d)

where u is the horizontal speed, w is the vertical speed, ρ0 is a constant density, p is
the pressure perturbation, b is the buoyancy, N is the Brunt-Väisälä frequency, and Q
is the buoyancy source or, in other words, the heating. Let there be a rigid lid at H,
where H is the tropopause.

With this system of equations, we will want to understand what happens when we
have an isolated pulse of heating. This isolated pulse of heating can be thought of as
either the subsidence warming generated in the vicinity of a single cumulonimbus, or as
the heating of a column of atmosphere due to a positive anomaly in the convective mass
flux in that column. Either way, if we imagine that the vicinity of the cumulonimbus
is small (or that the column that got anomalously heated is small), then we can
approximate that heating as being localized as a Dirac delta function in x. Likewise, if
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the heating is deposited quickly, then we can think of the heating as being localized in
time. On the other hand, the vertical structure of the heating could be anything. To
simplify matters, we will use sine functions to describe the possible vertical structures.
(These sine functions can be used to construct any vertical structure of heating that is
zero at the surface and tropopause.) Let m be the vertical wavenumber of the chosen
sine function: m = nπ/H, where n is an integer. Then, a heating that is localized in
x, localized in t, and has vertical wavenumber m is described mathematically by

Q(x, z, t) = B0 sin(mz)δ(x)δ(t) . (1.30)

Here, B0 is the horizontally integrated amplitude of the resulting buoyancy anomaly
at t = 0+. In fact, equation (1.29c) tells us that the buoyancy at time t = 0+ is simply

bm(x, z, 0+) = B0 sin(mz)δ(x) , (1.31)

where we will keep a subscript m on this buoyancy to remind us that this is the solution
with that vertical wavenumber. The question, then, is how this buoyancy evolves in
time. In other words, what is b(x, z, t) for t > 0?

To begin, we must first obtain from equations (1.29) a single equation for b. The
reader can verify that these equations can be combined to yield

∂2
t ∂

2
zb+N2∂2

xb = ∂t∂
2
zQ . (1.32)

Since we already know the buoyancy at t = 0+, and since Q = 0 for all t > 0, we are
interested in the homogeneous part of this equation, i.e.,

∂2
t ∂

2
zb+N2∂2

xb = 0 . (1.33)

This looks a lot like a wave equation.
To make any further progress, though, we need to make an assumption about the

boundary condition at the tropopause. It is typical to treat the tropopause as a rigid
lid. This is tantamount to assuming that the static stability of the stratosphere is
infinite; i.e., N = N1 > 0 in the troposphere, where N1 is finite, and N = N2 = ∞
in the stratosphere. That infinite stratification implies that w = 0 at z = H. Since w
also equals zero at the surface, i.e., at z = 0, we have a finite domain in the vertical,
and this implies that the normal modes of the system are discretized. In fact, from
looking at equation (1.33), we can guess them pretty easily:

sin(mz)f(x+Nt/m)

and

sin(mz)f(x−Nt/m) ,

with m an integer multiple of π/H and f an arbitrary function.
These solutions are waves of buoyancy that retain their vertical structure and

propagate either to the left or the right with speed N/m. Therefore, for the initial
buoyancy given in equation (1.31), the solution must be a delta function moving either
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to the left and/or the right. In fact, by the symmetry of the problem, there must be
equal delta functions moving to the left and the right. Therefore, the solution is

bm(x, z, t) =
B0

2

[
δ(N1t/m+ x) + δ(N1t/m− x)

]
sin(mz)H(H − z)H(t) . (1.34)

In the absence of dissipation, these pulses will propagate forever. As more and more
moist convection happens, the domain fills up with more and more of these pulses,
adding more and more kinetic energy. When does the growth in kinetic energy ever
stop? In this system, never.

1.6 Leaky-lid gravity waves

In the real troposphere, of course, gravity-wave kinetic energy does not grow ad infini-
tum. Why? Because the tropopause is not a rigid lid. In other words, the stratification
of the stratosphere is not infinite. Instead, N2 is positive and finite. This allows waves
to propagate into the stratosphere where they grow in amplitude due to the decreas-
ing density, causing the waves to break and convert their energy to heat. For these
tropospheric-centric lecture notes, we are interested not in the details of that wave
breaking, but in what the escape of wave energy from the troposphere does to the
pulses of heating in the troposphere.

Consider a semi-infinite atmosphere in the vertical, where N is piecewise constant
in height,

N =

{
N1 0 ≤ z ≤ H
N2 H < z

. (1.35)

ForN2 > N1, this is a simple analogue for Earth’s atmosphere in which the troposphere
is capped by the more stratified stratosphere. In this system, we have to be a bit more
careful when we describe the heating. In principle, we could add a heating to the
stratosphere. In practice, however, moist convection does not appreciably penetrate
into the stratosphere7, so we are still only interested in heatings that are confined
between z = 0 and z = H. Therefore, we just need to be clear that our wavenumber-m
heating pulse and the resulting initial buoyancy is restricted to z < H, which we can
do with the Heaviside unit step function H,

bm(x, z, 0+) = B0 sin(mz)δ(x)H(H − z) . (1.36)

How does this evolve in time? Is (1.34) the solution? No, it is not. Since there is no
longer a rigid lid, w is no longer constrained to be zero there, and the normal modes
are now quite different. However, bm(x, z, t) can be derived analytically; for details,
see Edman and Romps (2017).

Although the expression for bm(x, z, t) is a bit complicated, its behavior is simple.
There are still two pulses of buoyancy: one that travels left and one that travels right.
And, as in the rigid-lid case, the pulses are initially delta functions and they travel

7Deep convective clouds can sometimes overshoot into the stratosphere, but that effect is much
too small and irrelevant to be bothered with for our purposes here.
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away from the origin at a speed of N/m. But, there are two big differences from the
rigid-lid case: the stratosphere jiggles with waves, and the pulses of buoyancy in the
troposphere “melt”. By “melting”, I mean that each pulse spreads out, growing in
width. As it turns out, that width grows linearly with time. As a function of time, the
full-width half-maximum of each pulse is

FWHM ≈ N1

N2

πN1t

Hm2
. (1.37)

Since the integrated buoyancy within each pulse is finite, this also means that the
buoyancy in each pulse is finite valued for all t > 0.

Let us put some numbers to these things. Let us take N1 = 0.01 s−1, N2 =
0.025 s−1, and H = 15 km as characteristic values for Earth’s tropics. Deep heating
throughout the troposphere will project strongly onto a vertical wavenumber of m =
π/H, which is referred to as the first-baroclinic mode8. For this wave,

dFWHM/dt ≈ N1

N2

HN1

π

≈ .01

.025

15× 103 × .01

3
= 20 m/s .

Meanwhile, for a first-baroclinic wave, the horizontal group velocity is

|cgx| = N1/m

=
HN1

π

≈ 15× 103 × 0.01

3
= 50 m/s .

So, we see that the speed at which each pulse widens is comparable in magnitude to
its speed of propagation.

How can we understand this behavior? Putting a plane wave bm ∝ exp(−iωt +
ikx+ imz) into

∂2
t ∂

2
zbm +N2

1∂
2
xbm = 0 ,

we find
(−iω)2(im)2 +N2

1 (ik)2 = 0 ,

which can be written as
ω = ±N1k/m .

This is the dispersion relation for hydrostatic gravity waves in the troposphere. Note
that ∂ω/∂k gives the N1/m expression used for the horizontal group velocity above.
The vertical group velocity is given by

8In general, we refer to waves with m = nπ/H as the nth-baroclinic mode.
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cgz =
∂ω

∂m
= ∓N1k/m

2 .

Taking the plus sign to consider wave packets traveling upwards, we get N1k/m
2. To

get an estimate of the residence time of the wave energy in the troposphere, we divide
H by this speed, which gives

τno lid ≈
m2H

N1k
.

This is the timescale with no lid, i.e., with N2 = N1. When N2 > N1, there is some
wave reflection at the tropopause, trapping wave energy for longer. The result of
that reflection is that the residence timescale is increased by a factor of N2/N1; see
Edman and Romps (2017) for details. Therefore, the residence timescale for a wave
with wavenumbers k and m is

τleaky lid ≈
N2

N1

m2H

N1k
.

In the tropics, N2/N1 ≈ 2.5 and H ≈ 15 km. The key thing for us to note is that
this timescale is proportional to 1/k, so higher horizontal wavenumbers decay faster.
A wave with a first-baroclinic (m = π/H) vertical structure and a 100-km horizontal
wavelength will decay on a timescale of

τleaky lid ≈
N2

N1

π2

HN1k

= 2.5
π2

15× 103 × 0.01× (2π/105)

= 2.5
π

3× 10−3

≈ 2500 s

< 1 hour .

After an hour, what is left in the troposphere? In this case, not much: the sine wave
has mostly disappeared after an hour. What if the pattern were not sinusoidal, but
had a pattern that repeated horizontally every 100 km? In that case, there would be
higher-k components at the beginning, but those would decay away in even less time
than 1 hour because the residence timescale goes like 1/k. On the other hand, if there
were components with wavelengths much greater than 100 km, then those components
would still remain after 1 hour.

The longest-lived first-baroclinic wave would be the wave with the longest possible
horizontal wavelength. On Earth, the maximum lengthscale is set by the planet’s
circumference of 40,000 km. For a wave with that horizontal wavelength, the timescale
would be 400 times as long as for the 100-km wavelength, and that is equal to about
10 days.

It is important to recognize that the vertically propagating waves do not remove
the horizontally averaged buoyancy from the troposphere. The horizontally averaged
buoyancy belongs to the k = 0 component, which has an infinite residence timescale.
The propagation of waves out of the troposphere simply smooths the buoyancy hori-
zontally until, finally, it is horizontally uniform.



24 Moist Convection

1.7 When and why does DSE conservation fail?

In section 1.2.6, we saw that using conservation of DSE could generate negative tem-
peratures, which is clearly unphysical. The problem is with the DSE equation that we
derived,

d

dt
DSE = Q/ρ .

Although this is how the DSE equation is almost always written, this is missing a
term that can be quite important in certain cases. To find out what went wrong in
the derivation, and to correct it, we must go back to the enthalpy equation,

ρ
d

dt
h = Q+

d

dt
p .

To treat the dp/dt term properly, we need to distinguish between the pressure and
density of the Lagrangian parcel (p and ρ) and the pressure and density of the envi-
ronment at the same height but far from the Lagrangian parcel (pe and ρe). Then,
to invoke hydrostatic balance, we need to make two reasonable assumptions: 1. that
the environment is hydrostatic far from the parcel (i.e., with ∂zpe = −ρeg there) and,
2. that p(z) = pe(z) (which does not require hydrostatic flows around the parcel).
With those two assumptions,

dp

dt
=
dpe
dt

= w
dpe
dz

= w∂zpe

= −wρeg

= −ρe
d

dt
(gz) .

Substituting into the enthalpy equation, we get

ρ
d

dt
h = Q− ρe

d

dt
(gz) .

Next, we add ρ d(gz)/dt to both sides to make ρ dDSE/dt on the left. Because ρe 6= ρ
in general, we get

ρ
d

dt
DSE = Q+ (ρ− ρe)

d

dt
(gz) .

Dividing by ρ, this can be written as

d

dt
DSE = Q/ρ− bw , (1.38)

where
b = g(ρe/ρ− 1) (1.39)

is the parcel’s buoyancy. Using the ideal gas law and the fact that p = pe, the reader
can confirm that equation (1.39) is identical to equation (1.5).



When and why does DSE conservation fail? 25

For adiabatic processes, equation (1.38) tells us that

d

dz
DSE = −b .

In other words, if the Lagrangian parcel is positively buoyant, then its DSE decreases
as it moves upwards. If it is negatively buoyant, its DSE increases as it moves upwards.
We can write this as a conservation law by noting that convective available potential
energy (CAPE) is the vertical integral of a parcel’s buoyancy from its current height
to some reference height above (e.g., its level of neutral buoyancy),

CAPE =

∫ LNB

z

dz′ b(z′) .

Note that
d

dz
CAPE = −b .

Therefore, we can write the general conservation law for a dry adiabatically lifted
parcel as

d

dz
(DSE− CAPE) = 0 .

In other words, DSE−CAPE is conserved for an adiabatically lifted parcel. When water
is involved, the correct statement is that moist static energy (MSE) minus CAPE is
conserved; see Romps (2015) for details.

Let us return to that example of lifting a surface parcel to 40 km. Using an original
temperature of 300 K and conserving DSE, we got the nonsensical temperature of
−100 K. Now, let us use conservation of DSE− CAPE. That can be written as

d

dz
(cpT + gz) = −b

= −g ρe − ρ
ρ

= −gρe/ρ+ g

⇒ cp
dT

dz
= −gρe/ρ

= −gT/Te

⇒ dT

dz
= − g

cpTe
T

⇒ d

dz
log(T ) = − g

cpTe

⇒ T (z) = T (0) exp

[
−
∫ z

0

dz′
g

cpTe(z′)

]
.

From this equation, we see that T is always non-negative. For an isothermal atmo-
sphere, this is simply

T (z) = T (0)e−gz/cpTe .

In other words, the temperature of the parcel undergoes an e-folding reduction for
every distance cpTe/g that it ascends. For Te = 300 K, this is 1000× 300/10 = 30 km.
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So, by 40 km, the parcel has experienced only a little more than one e-folding of its
temperature: 300× exp(−40/30) = 79 K.

To make contact with the standard dry-adiabatic lapse rate, let us take the ex-
pression for the T (z) of a dry parcel in an isothermal atmosphere and Taylor expand
in terms of z. This gives

T (z) = T (0)− T (0)

Te

g

cp
z +

T (0)

2

(
g

cpTe

)2

z2 + . . . .

Written this way, we see that the parcel’s initial lapse rate is not g/cp, but T (0)/Te
times g/cp. Consider the case where Te = 300 K. If T (0) = 303 K, then the parcel’s
initial lapse rate will be 1% larger than g/cp. If the parcel is heated by a flame to
1000 K, then the parcel’s initial dry-adiabatic lapse rate will be a whopping 33 K/km.
If, on the other hand, the parcel begins with T (0) = Te, then its initial lapse rate
will be exactly g/cp and the third term on the right-hand side becomes the leading
correction. That third term on the right-hand side remains negligible compared to the
second term on the right-hand side so long as z is much less than cpTe/g, which is
exactly the e-folding distance for T (z).

1.8 Moist thermodynamic equations

What happens if there is water vapor? Since water vapor can condense, we have to
account for the internal energy of the water vapor to properly track the energy. The
energy of an air parcel is then approximately given by

E = cvT + qvE0v − qsE0s + u2/2 + gz , (1.40)

where qv is the vapor mass fraction (i.e., the fraction of the parcel’s mass that is water
vapor), qs is the solid mass fraction (i.e., the fraction of the parcel’s mass that is ice),
E0v is the difference in specific internal energy between vapor and liquid at the same
temperature, and E0s is the difference in specific internal energy between liquid and
solid at the same temperature. This expression is approximate because it does not
account for the differences between the heat capacities of dry air, water vapor, liquid
water, and ice. Those differences must be taken into account in any quantitatively
accurate treatment of atmospheric thermodynamics (see Romps 2008), but are not
at all necessary for understanding the basics. Therefore, in the expression above, we
pretend as though dry air, water vapor, liquid water, and ice all have the same heat
capacity cv. This is an acceptable approximation because the total mass fraction of
water does not exceed a few percent in Earth’s tropics.

Note that the liquid-water mass fraction ql does not appear in this definition of
specific energy. That is because we have chosen to define the specific internal energy of
liquid water as equal to the specific internal energy of dry air at the same temperature.
By this choice, a kilogram of liquid water has the same energy as a kilogram of dry
air with the same T , u2, and z. Because liquid water can evaporate or freeze, we are
not free to make the same choice for water vapor and ice; instead, the values of E0v

and E0s must be given their empirical values. If water were able to convert to dry air,
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then that would have eliminated the freedom we have to define the internal energy of
liquid water equal to dry air.

Proceeding as before, the specific internal energy e is simply the specific energy E
minus the specific kinetic and gravitational pieces,

e = cvT + qvE0v − qsE0s . (1.41)

To get specific enthalpy, we must add to this the specific “pV ”, which is p/ρ. We
will assume that liquid and ice have no volume9 so that they contribute nothing to
“pV ”. Therefore, p = (qaR+ qvRv)ρT , where qa = 1− qv − ql − qs is the dry-air mass
fraction, R is the specific gas constant of dry air, and Rv is the specific gas constant
of water vapor. Adding p/ρ to the specific internal energy, we get specific enthalpy
h = e+ (qaR+ qvRv)T , or

h = cpT − qtRT + qvLc − qsLf ,

where cp = cv +R, qt = qv + ql + qs is the total water mass fraction, Lc = E0v +RvT
is the specific latent heat of condensation, and Lf = E0s is the specific latent heat of
freezing. The qtRT term is small compared to the errors introduced by neglecting the
differences in heat capacity between dry air and the three phases of water, so we can
safely ignore this term for the level of accuracy we hope to achieve here. Therefore,
we can write our expression for the enthalpy as

h = cpT + qvLc − qsLf . (1.42)

We can then define something perfectly analogous to the dry static energy by adding gz
to the specific enthalpy. Rather than calling it the dry static energy (DSE), however, we
refer to it as the moist static energy (MSE) to emphasize that water is involved. Adding
the specific gravitational potential energy to the enthalpy, we get MSE = h+ gz, or

MSE = cpT + qvLc − qsLf + gz . (1.43)

The E, e, h, and MSE equations are then

ρ
d

dt
E = Q− ~∇ · (p~u) (1.44)

ρ
d

dt
e = Q− p~∇ · ~u (1.45)

ρ
d

dt
h = Q+

dp

dt
(1.46)

ρ
d

dt
MSE = Q− ρbw . (1.47)

With E, e, h, and MSE defined in this way, we must interpret Q strictly as a radiative
heating; we can no longer think of Q as encompassing latent heating, too. Instead,
with these definitions, latent heating does not alter E, e, h, or MSE; e.g., for MSE, it
simply moves energy between cpT , gz, qvLc, and, if freezing, melting, deposition, or
sublimation are involved, −qsLf .

9The density of air at 1 bar is about 1 kg m−3, whereas the density of water is about 1 ton m−3,
so the specific volume of liquid is about 1000 times smaller than that for dry air.
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1.9 Moist-adiabatic lapse rate

A common convention, and the one that we adopt here, is to denote saturation quan-
tities by an asterisk. So, for example, if we define pv to be the vapor pressure of water
vapor, then p∗v(T ) is the saturation vapor pressure at temperature T . Note that p∗v is a
function of temperature only. Similarly, q∗v is the saturation water-vapor mass fraction;
it is a function of temperature and pressure. For a warm cloud, i.e., one that has no
ice, we can approximate qv as q∗v because the cloud always stays within 1% of a rela-
tive humidity of one. Therefore, given the cloud’s MSE, pressure, and height, we can
calculate its temperature. For a cloud with a mixture of ice and liquid, its qv is more
uncertain because it lies somewhere in between the saturation value with respect to
liquid and the saturation value with respect to ice; the precise value is determined by
time-dependent kinetic effects. To avoid those complications, we will simply ignore ice
and assume that we are dealing with warm clouds. With the assumption that qs = 0,
we can write a cloud’s MSE, which is equal to its MSE∗, as

MSE = MSE∗ = cpT + q∗v(p, T )L+ gz (warm cloud) ,

where we henceforth drop the subscript “c” on Lc since there will be no ambiguity going
forward that L is the latent heat of condensation. If the cloud’s buoyancy is negligible,
and if the cloud’s lifetime is brief compared to the time it would take radiative heating
to have any significant effect, then, by equation (1.47), we can approximate its MSE
as conserved10. Then, assuming we know the MSE of the cloud, and given z and p,
we can solve the above equation for T numerically (i.e., using a root solver). In that
way, we can construct the entire temperature profile of the cloud as it rises through
the troposphere.

What implication does this have for the temperature profile of the atmosphere?
Well, one common and convenient approximation is to say that convection adjusts
the temperature of the atmosphere to a moist adiabat11. To be precise, an atmosphere
with a moist-adiabatic temperature profile is an atmosphere whose temperature profile
is the same as that of a saturated air parcel that is adiabatically lifted through it. Let
us derive the expression for a moist adiabat in such an atmosphere.

First, we have to figure out how q∗v varies in the vertical. Since q∗v is approximately
given by12

q∗v =
Rp∗v
Rvp

,

we can take ∂z of this and divide by q∗v to find

∂z log(q∗v) = ∂z log(p∗v)− ∂z log(p) . (1.48)

10This ignores convective entrainment, which we will later see is important. The effect of entrain-
ment would show up in equations (1.44–1.47) through diffusive terms, which we have neglected. The
turbulent eddies would shear out our cloudy parcel until spatial gradients in its vicinity become so
large that the diffusive terms start to matter, and the properties of the environment would begin to
diffuse into the parcel.

11Again, this statement neglects the effects of entrainment. The lapse rate with entrainment will
be treated in section 1.12.

12The approximation here is to keep using R, the dry-air gas constant, for the moist air. For small
qv , this is a good approximation.
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So, to figure out how q∗v varies in the vertical, we need to find ∂z log(p∗v) and ∂z log(p).
From the Clausius-Clapeyron relation, we know that p∗v varies with temperature

according to
d

dT
log(p∗v) =

L

RvT 2
.

Defining Γ = −∂T/∂z as the lapse rate, we can multiply this by Γ to get

∂z log(p∗v) = − LΓ

RvT 2
. (1.49)

This gives us one of the terms needed on the right-hand side of equation (1.48).
For the other term, we can use hydrostatic balance,

∂zp = −ρg .

Using the ideal gas law to write ρ as p/RT , we get

∂z log(p) = − g

RT
. (1.50)

This is the second term needed on the right-hand side of (1.48).
Combining (1.48–1.50), we get

∂z log(q∗v) = −γ , (1.51)

where

γ =
LΓ

RvT 2
− g

RT
. (1.52)

This is the fractional change in q∗v with height.
We are now ready to derive the moist-adiabatic lapse rate. By definition of a

moist-adiabatic atmosphere, the temperature of adiabatically rising clouds matches
the temperature of the environment, so the cloud buoyancy is zero and, therefore,
the cloud MSE is conserved (i.e., constant in height). Since clouds are saturated, this
means that MSE∗ is conserved as well, which means that ∂zMSE∗ = 0. This fact can
be written as

0 = ∂zMSE∗

= cp∂zT + L∂zq
∗
v + g∂zz

= −cpΓ− Lq∗vγ + g

= −cpΓ− Lq∗v
(

LΓ

RvT 2
− g

RT

)
+ g

= −Γ

(
cp +

q∗vL
2

RvT 2

)
+ g +

q∗vLg

RT
.

Solving for Γ, we get

Γ =
g +

q∗vLg

RT

cp +
q∗vL

2

RvT 2

. (1.53)

This is the moist-adiabatic lapse rate.
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In very cold temperatures, terms multiplied by q∗v are small, so Γ = g/cp = 10 K
km−1. This makes sense: in cold climates, water vapor is so scarce that its presence
should have a negligible impact on the lapse rate. This is true in the tropical upper
troposphere. On the other hand, at the bottom of the tropical free troposphere, q∗v
is roughly 0.02 and cannot be neglected. Using R ≈ 300 J kg−1 K−1, Rv ≈ 500 J
kg−1 K−1, and L ≈ 2.5× 106 J kg−1, we can find Γ at the bottom of the tropical free
troposphere to be

Γ =
10 + 0.02×2.5×106×10

300×300

1000 + 0.02×(2.5×106)2

500×3002

(1.54)

= 4 K km−1 . (1.55)

If we average 10 and 4 we get 7 K km−1, which is very close to the value of 6.5 K
km−1 that is often taken as a representative lapse rate for the troposphere.

1.10 Bulk-plume model

So far, we have neglected convective entrainment, which is the turbulent mixing – and
subsequent diffusion – of environmental properties into clouds as they rise through
the atmosphere. The simplest representation of a convective atmosphere that includes
entrainment is called the bulk-plume model. To be more accurate, we could call this a
two-bulk-plume model: one of the plumes is for the ascending air and the other plume
is for the descending air. By “bulk” we mean that the properties of each plume are
horizontally homogeneous.

Let us denote one of the plumes by a subscript c for convecting clouds, and let us
denote the other plume by a subscript e for environment. For conservation of mass,
we can approximate the density of the cloud and environment as equal, so we will
not bother with a subscript on ρ. Let us denote the area fraction of the cloud and the
environment by σc and σe, respectively. These are related by σe = 1−σc. Let us denote
the vertical velocity of the cloud by wc and the vertical velocity of the environment
by we.

Finally, we will assume that the atmosphere is in radiative-convective equilibrium
(RCE). This means that there is no large-scale ascent or descent, just like in a single
column of a GCM that is physically isolated from its neighbors. In RCE, conservation
of mass requires that σcwc+σewe = 0. We call σcρwc the convective mass flux or, since
there is usually no ambiguity as to which mass flux we are referring, we simply call it
the mass flux. We denote this by M . Note that the convective and environmental mass
fluxes are equal and opposite; when we need to be careful with signs, we might write
these as Mc and Me, respectively. Note that M = σcρwc has units of kg m−2 s−1. In
particular, M(z) is the kilograms of convective air passing upward per second through
an average square meter of horizontal area at height z. Note that this is the mass
flux for an average area of the total domain, not for an average area of the convective
plume, which would simply be ρwc.

We are almost ready to write down the continuity equations for the two plumes.
But, we first need to recognize that mass can move from one plume to the other. If this
were not possible, then air could not move in the plumes at all: the troposphere has a
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lower and upper boundary, so for mass to ascend in one plume, it must eventually move
into the other plume so that it can descend. Let us denote by e(z) the kilograms of air
per second that are entrained into the convective plume from the environmental plume
in an average cubic meter of total atmosphere at height z. Similarly, we can define d(z)
to be the mass that is detrained from the convective plume into the environmental
plume.

Now, we can write the two mass-conservation equations as

∂t(σcρ) + ∂z(σcρwc) = e− d (1.56)

∂t(σeρ) + ∂z(σeρwe) = d− e . (1.57)

Since σe = 1 − σc and σeρwe = −σcρwc, these are redundant equations, so we need
only keep one of them. We will retain the first one.

By scale analysis, we can reduce the complexity even further. For a column of at-
mosphere that is hundreds of kilometers wide with a large ensemble of cloudy updrafts,
σc will vary on timescales of about a day or longer. Convective properties will vary
in the vertical on a length scale comparable to the depth of the troposphere. And,
empirically, the characteristic updraft speed and convective area fraction are about
10 m s−1 and 10−3. Altogether, the characteristic scales of t, z, wc, ρ, and σc are,
respectively,

T = 105 s (1.58)

H = 104 m (1.59)

Wc = 10 m s−1 (1.60)

P = 1 kg m−3 (1.61)

Σc = 10−3 . (1.62)

Therefore, the magnitudes of the terms on the left-hand side of (1.56) are ΣcP/T =
10−8 kg m−3 s−1 and ΣcPWc/H = 10−6 kg m−3 s−1. Therefore, the first term (the
storage) is 100 times smaller than the second term (the divergence), so it does not enter
into the dominant balance and can be neglected. In fact, to reach this conclusion, we
do not have to assume anything about the magnitudes of ρ and σ since they appear in
both terms on the left-hand side. For example, the tendency would still be 100 times
smaller than the divergence if we took the magnitude of ρ to be P = 0.1 kg m−3

(appropriate for the upper troposphere) and/or Σc = 10−2 (appropriate for a more
intensely convecting atmosphere). The large difference in magnitude between the two
terms on the left-hand side of (1.56) is caused by the fact that mass transits the depth
of the convecting layer in a time that is much shorter (about 103 seconds) than the
timescale over which M varies (about a day, or 105 seconds).

Neglecting the tendency term, the continuity equation for a bulk-plume atmosphere
(with no large-scale ascent or descent) becomes

∂zM = e− d . (1.63)

Introducing the fractional entrainment rate ε (units of m−1) and fractional detrainment
rate δ (units of m−1), which are related to e and d by e = εM and d = δM , we can
write (1.63) as
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∂zM = M(ε− δ)
or

∂z log(M) = ε− δ .
Next, let us consider how a passive tracer gets transported by the bulk plumes.

Let us denote the mixing ratio of the tracer in the two plumes as φc(z) and φe(z). If
the tracer has no sources and sinks, i.e., it is just advected by the plumes, then the
tracer obeys

∂t(σcρφc) + ∂z(σcρwcφc) = eφe − dφc (1.64)

∂t(σeρφe) + ∂z(σeρweφe) = dφc − eφe . (1.65)

By the same argument as above, the tendency in the first equation does not enter into
the dominant balance and can be neglected. But, that argument cannot be made for the
environment’s tendency: the timescale for variations in φe is comparable to or smaller
than the timescale for environmental mass to transit the depth of the troposphere. In
fact, the timescale T for variations in φe can be thought of as advection dominated
(i.e., dominated by subsidence). Letting L denote the length scale of vertical variations,
which can be less than H if φe has many oscillations in the vertical, then the scales
for equation (1.65) are

T = L/We (1.66)

L ≤ H (1.67)

We = ΣcWc = 10−2 m s−1 , (1.68)

where the last line is obtained from conservation of mass (σeρwe = −σcρwc). With
these scales, the terms on the left-hand side of (1.65) are of the same order of magni-
tude, so both terms must be retained.

Since σe ≈ 1, we can approximate the tendency in equation (1.65) as ρ∂tφe. There-
fore, we can approximate these equations as

∂z(Mφc) = eφe − dφc (1.69)

ρ∂tφe − ∂z(Mφe) = dφc − eφe . (1.70)

Using equation (1.63), we can write (1.69) as

∂zφc = ε(φe − φc) . (1.71)

This tells us that entrainment is trying to relax φc to φe on a length scale of 1/ε as
the cloud rises. If we add (1.69) and (1.70), we get

ρ∂tφe = ∂z [M(φe − φc)] . (1.72)

This tells us that the tracer is conserved: the storage of tracer in a layer of the atmo-
sphere is equal to the convergence of tracer into that layer by the convective plume,
−∂z(Mφc), plus the convergence of tracer into that layer by the environmental plume,
−∂z(Meφe) = ∂z(Mφe).

To get a feel for how the tracer evolves, let us consider the simplifying case of
∂zM = 0. We can then take a look at three scenarios:
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Fig. 1.7 The response of a sinusoidal tracer profile to moist convection with δ = ε and three

values of ε: zero, the vertical wavenumber of the sinusoid, and infinity.

• If ε = 0, equation (1.71) tells us that ∂zφc = 0, so φc is constant in height.
Therefore, by (1.72), ρ∂tφe = M∂zφe. In other words, the φe profile simply advects
downwards at a speed M/ρ.

• In the limit of ε → ∞, equation (1.71) tells us that φc = φe; i.e., the exchange
of mass into and out of the convective plume is so fast that the properties of the
convective plume are identical to that of the environment. By equation (1.72),
this tells us that ∂tφe = 0. In other words, the φe profile does not evolve: the
initial φe(z) is simply frozen in time.

• For intermediate ε, the effect is to cause the profile to descend and decay. (I say
“decay” rather than diffuse because the effective diffusivity is a function of verti-
cal wavenumber, so it is not strictly a diffusive process.) The fastest decay occurs
when ε = m, where m is the vertical wavenumber. In that case, the e-folding
timescale is 2ρ/Mm and the subsidence speed is M/2ρ (see Romps 2014b for de-
tails). Therefore, the distance that the sinusoid descends in one e-folding timescale
is 1/m, i.e., a wavelength divided by 2π, i.e., about one-sixth of a wavelength. In
other words, the tracer pattern decays away rapidly.

These three scenarios are depicted in Figure 1.7. As ε is increased from 0 to ∞, the
descent rate decreases from M/ρ to 0. On the other hand, the decay rate of the sinusoid
is non-monotonic as ε is increased from 0 to ∞: it starts at 0, reaches a peak value
when ε = m, and then goes back to zero.

1.11 Free-tropospheric relative humidity

The previous section has given us a feel for the transient evolution of tracers in the
moist-convecting atmosphere. More relevant to climate, however, is the application of
the bulk-plume equations to the steady-state profile of relative humidity. Water vapor
is the dominant greenhouse gas and shortwave absorber, so it is critically important
to understand the processes that set its distribution.

In the derivation that follows, we will let qv(z) represent the water-vapor mass
fraction in the environment. Since the environment occupies 99-99.9% of the horizontal
area at each height, qv(z) is also an excellent approximation for the specific humidity
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averaged over the entire area (both convection and environment) at height z. Therefore,
we will interchangeably refer to qv as the specific humidity of the environment and of
the entire atmosphere.

For the convective plume, we will make two simplifying approximations. First,
we will assume that the convective plume carries no condensates. This may sound
a bit silly (after all, clouds are only visible because of their condensates), but the
ratio of the condensate mass fraction to the water-vapor mass fraction is quite small
within moist convection in the lower troposphere. And, although we do not allow the
convective plume to loft condensates, we still allow the convecting plume to condense
water vapor; we just imagine that the resulting condensates are removed from the
convective plume quickly, with some fraction rapidly falling to the surface and the
remainder rapidly evaporating into the environment.

Second, we assume that the temperatures of the two plumes are equal at each
height. This “zero-buoyancy plume approximation” was introduced by Singh and
O’Gorman (2013). This may also sound a bit silly (after all, clouds only rise be-
cause they have some positive buoyancy), but that buoyancy is of only secondary
importance to the atmosphere’s water budget. Furthermore, the typical buoyancy of
tropical moist convection (expressed as an effective temperature difference) is only
about 0.3 K (Romps and Öktem, 2015), which is quite small, indeed. With these two
approximations, the convective plume’s mass fraction of total water is simply equal to
the environment’s saturation humidity, q∗v(z).

To begin, we will construct the bulk-plume equations for water vapor in RCE, i.e.,
in an atmosphere with no net ascent or descent. Let M denote the convective mass flux
(units of kg m−2 s−1), e and d denote the entrainment and detrainment rates (units of
kg m−3 s−1), c denote the condensation rate (units of kg m−3 s−1), and α the fraction
of condensates formed at height z that evaporate into the environment. For analytic
solubility, we will assume that this fraction of condensates formed at z also evaporates
into the environment at height z. Note that the precipitation efficiency PE is equal to
1−α. We can then write down the following equations for the steady-state convective
mass flux M , the humidity within clouds q∗v , and the humidity within the environment
qv:

∂zM = e− d (1.73)

∂z(Mq∗v) = eqv − dq∗v − c (1.74)

∂z(−Mqv) = dq∗v − eqv + αc . (1.75)

Since M is the total mass flux and qv is a mass fraction (as opposed to a mixing ratio),
there should technically be a −c on the right-hand side of equation (1.73) to account
for the loss of mass due to condensation. For small q∗v , as in Earth’s atmosphere, this
term has a negligible impact and its inclusion greatly complicates the equations, so
it has been omitted13. Defining the fractional entrainment and detrainment rates as

13This choice is analogous to the treatment of mass in the Boussinesq equations, in which density
is held constant for the purposes of the conservation-of-mass equation even though it is effectively
removed and added by the “heating” Q in the equation for buoyancy.
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ε = e/M and δ = d/M , the mass flux M can be eliminated from these equations to
yield

∂zq
∗
v = ε(qv − q∗v)− c/M (1.76)

−∂zqv = δ(q∗v − qv) + αc/M . (1.77)

Writing qv as RHq∗v , we can write the left-hand side of (1.77) as

[1− (1/γ)∂z log(RH)] RHγq∗v

where γ = −∂z log(q∗v) as before. Since 1/γ ≈ 2 km in the tropics, the second term
in these square brackets is negligible so long as the fractional variations in relative
humidity (RH) are small over that distance. Averaged over large horizontal areas, this
is certainly true, so we can neglect that term and approximate these equations as

−γq∗v = ε(RH− 1)q∗v − c/M (1.78)

RHγq∗v = δ(1− RH)q∗v + αc/M . (1.79)

These two equations can be solved for RH and c/M , giving

RH =
δ + αγ − αε
δ + γ − αε

(1.80)

c

M
=

δ + γ − ε
δ + γ − αε

γq∗v . (1.81)

This derivation of equation (1.80) is replicated from Romps (2014a).
This expression for RH is particularly easy to understand if α = 0. In that case,

equation (1.80) simplifies to

RH =
δ

δ + γ
. (1.82)

Note that 1/δ is the lengthscale over which convection moistens the environment to-
wards saturation (by detraining saturated air into the clear air as it subsides), and
1/γ is the lengthscale over which subsidence drives RH towards zero (by adiabatic
compression of the subsiding air, which drives up q∗v). The relative humidity is set by
the balance between these two processes. If δ is large, then the moistening effect of
convection wins out over subsidence-driven drying, and RH is close to unity. If δ is
small, then the subsidence-driven “drying” dominates14, and RH is close to zero.

In the free troposphere, the relative humidity profile tends to have maximum values
in the lower and upper troposphere, and a minimum in the middle troposphere. We
are now in a position to understand this characteristic “C” shape of the RH profile.
In the lower troposphere, γ is small because Γ is small and T is large. In the upper
troposphere, δ is large because the mass flux is decreasing with height towards zero. In
both places, these facts push RH closer to one than zero. In the middle troposphere,

14The word “drying” is in quotation marks here because the adiabatic subsidence of a parcel does
not change its qv ; it only increases is q∗v , thereby leading to a decrease in RH. Therefore, it is only a
drying from the perspective of relative humidity.
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both δ and γ are moderate and, in fact, tend to be of comparable magnitude, i.e.,
around 1/(2 km). That drives RH to values around a half.

Equation (1.80) also allows us to see how biases in a convective parameterization
will affect free-tropospheric RH in a GCM. A convective parameterization that has
too little entrainment will also have too little detrainment (since the mass flux M and,
therefore, ∂zM are largely constrained by clear-sky radiative cooling, and ∂zM = e−d),
and this will tend to produce a free troposphere that is too dry. And, not surprisingly,
a convective parameterization that has too high a precipitation efficiency (i.e., too low
an α) will also produce a free troposphere that is too dry.

The precipitation efficiency is notoriously difficult to quantify in observations. For
an atmosphere with no net ascent, however, we can place a bound on the precipitation
efficiency simply by measuring RH. Solving (1.80) for α, we get

α = RH
A

B
, (1.83)

where

A = γ − (1− RH)
δ

RH
(1.84)

B = γ − (1− RH) ε . (1.85)

Since α and RH are positive by definition, either A and B are both positive or both
negative. To determine their sign, consider B. By equation (1.78), B is equal to the
gross condensation rate c divided by the mass flux M and q∗v , all of which are positive.
Therefore, A and B are both positive. Since δ is generally bigger than ε, δ/RH is
almost certainly bigger than ε, so 0 < A < B. Therefore, A/B < 1 and so α < RH.
Since PE = 1 − α, this implies that PE > 1 − RH. In other words, an observation of
RH automatically provides a lower bound on PE. Figure 1.8 plots PE and 1−RH for a
cloud-resolving simulation of RCE, where PE(z) is the net condensation above height
z divided by the gross condensation above height z. As expected, PE is bounded from
below by 1− RH.

1.12 Moist-entraining lapse rate

In section 1.9, we derived an expression for the moist-adiabatic lapse rate. In reality,
the lapse rate of the tropical free troposphere is larger than that for a moist adiabat;
the real atmosphere is much closer to the temperature of entraining moist convection.
Following Romps (2016), we can derive an expression for the moist-entraining lapse
rate by assuming that M , RH, and PE (i.e., 1− α) are all constant with height. The
constancy of M with height then implies that ε = δ, and the constancy of RH and α
then implies that ε and δ are both constant.

To set up the problem, we must write down two expressions for the vertical deriva-
tive of MSE∗ that can be combined to give an expression for Γ. Using the zero-buoyancy
plume approximation, MSE∗ of the environment is equal to MSE∗ of the convection
because their temperatures are equal. Recalling the definitions MSE∗ = cpT+Lq∗v +gz
and γ ≡ −∂z log(q∗v), we can write
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Fig. 1.8 (left) Profiles of (dashed) 1−RH and (solid) precipitation efficiency for a cloud-re-

solving simulation of RCE. Adapted from Romps (2014a).

∂zMSE∗ = −cpΓ + g − Lγq∗v .

Using equation (1.52) for γ, we can write this as

∂zMSE∗ = g

(
1 +

q∗vL

RT

)
− Γ

(
cp +

q∗vL
2

RvT 2

)
. (1.86)

The second equation for MSE∗ is obtained by writing down the bulk-plume equa-
tion for the updraft MSE,

∂zMSE∗ = ε(MSE−MSE∗)

= εL(qv − q∗v)

= ε(RH− 1)Lq∗v . (1.87)

The assumption of constant M , RH, and α implies that ε is proportional to γ. Let
us define the constant a as a = (1 − α)ε/γ. The entrainment rate, detrainment rate,
the relative humidity from equation (1.80), and the condensation rate from (1.81) can
then be written as

ε = δ =
aγ

1− α
(1.88)

RH =
α+ a

1 + a
(1.89)

c

M
=

γq∗v
1 + a

. (1.90)
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Substituting (1.88) and (1.89) into (1.87), we get

∂zMSE∗ = − a

a+ 1
γLq∗v . (1.91)

Note that γLq∗v = −L∂zq∗v , so this can be written as ∂zEMSE∗ = 0, where

EMSE∗ = cpT + gz +
Lq∗v

1 + a
(1.92)

is a conserved variable for entraining parcels in the zero-buoyancy plume approxima-
tion much like MSE∗ is conserved for adiabatic parcels; we call this the entraining
moist static energy (EMSE).

Finally, equating the right-hand sides of (1.86) and (1.91) and using (1.52) to
express γ in terms of Γ, we can solve for Γ to find

Γ =
(1 + a)g +

q∗vLg

RT

(1 + a)cp +
q∗vL

2

RvT 2

. (1.93)

If the entrainment rate is zero (i.e., a = 0), then the moist-entraining lapse rate reduces
to the moist-adiabatic lapse rate given in equation (1.53).

More interesting is the limit of infinite entrainment (i.e., a → ∞), in which case
the moist-entraining lapse rate reduces to the dry-adiabatic lapse rate g/cp. This is
consistent with equation (1.90), which tells us that the condensation rate goes to zero.
At the same time, however, equation (1.89) tells us that the atmosphere approaches
saturation. We can understand all of this as follows. An increase in the entrainment of
subsaturated environmental air reduces the condensation rate and, therefore, steepens
the lapse rate, pushing it towards the dry adiabat. Meanwhile, an increase in entrain-
ment implies an increase in detrainment, which moistens the environment, pushing it
towards saturation. For a very large entrainment rate, the environment is nearly sat-
urated, but the entrainment rate is large enough that the entrainment of the slightly
subsaturated environmental air places the condensation rate at a value near zero.

1.13 Analytical theory for CAPE

In the previous section, we learned that EMSE∗, defined in equation (1.92), is constant
in RCE when M , RH, and PE are constant. We can use this fact to derive an analytical
expression for CAPE following Romps (2016). From the fact that saturated EMSE∗

is constant with height in the environment, we know that

cpT + gze(T ) +
Lq∗v [pe(T ), T ]

1 + a
= cpTcb +

Lq∗v,cb

1 + a
, (1.94)

where Tcb is the cloud-base air temperature, q∗v,cb is the cloud-base saturation water-
vapor mass fraction, ze(T ) is the height profile as a function of environmental temper-
ature, and pe is the pressure profile as a function of environmental temperature.
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CAPE is the vertical integral of the buoyancy of a parcel as it is lifted adiabatically
through the atmosphere. The temperature of this adiabatically lifted parcel is governed
by the MSE equation, given in equation (1.47). There, we see that the MSE of the
parcel decreases with height in proportion to its buoyancy. To good approximation,
we can neglect that change in MSE so long as the characteristic height over which its
buoyancy is most significant (typically about 10 km in the upper troposphere) is small
compared to the scale height cpT/g (which is about 20-30 km)15. Therefore, we will
use strict conservation of MSE to approximate the properties of the adiabatic parcel.

For the adiabatic or “undiluted” parcel, we then know that

cpT + gzu(T ) + Lq∗v [pu(T ), T ] = cpTcb + Lq∗v,cb , (1.98)

where zu(T ) and pu(T ) are the profiles of height and pressure, respectively, as functions
of undiluted-parcel temperature. If we subtract (1.94) from (1.98), we get

g [zu(T )− ze(T )] + Lq∗v [pu(T ), T ]− Lq∗v [pe(T ), T ]

1 + a
=

a

1 + a
Lq∗v,cb .

Thanks to the fact that Lq∗v/RT � 1 through most of the troposphere16, q∗v [pu(T ), T ]
can be approximated as q∗v [pe(T ), T ]. Therefore, this simplifies to

∆z(T ) ≈ a

1 + a

L

g

(
q∗v,cb − q∗v

)
, (1.99)

where ∆z(T ) ≡ zu(T )− ze(T ). Figure 1.9 shows plots of ze and zu for three different
cloud-base temperatures and a = 0.2.

15To see why, imagine that we calculate the buoyancy of an adiabatically lifted parcel using conser-
vation of MSE (i.e., neglecting the adiabatic decrease in MSE) and obtain from this a characteristic
temperature anomaly (difference in temperature between a parcel and its surroundings) of ∆T . If we
had properly accounted for the decrease in MSE, then the correction to the parcel’s MSE would be

δMSE ∼ −CAPE .

Here, we are denoting corrections by a δ, not to be confused with the fractional detrainment rate.
In the upper troposphere, where q∗v is small, this must be expressed as a change in temperature or,
equivalently, a correction to ∆T on the order of

δ∆T ≈ −CAPE/cp .

Defining H as the characteristic height over which ∆T is most significant, then the correction to the
CAPE will be on the order of

δCAPE ∼ Hδb (1.95)

= Hg
δ∆T

T
(1.96)

≈ −
Hg

cpT
CAPE , (1.97)

and this is small if H � cpT/g, i.e., if the height over which the buoyancy is expressed is small
compared to the scale height cpT/g ≈ 20−30 km. In the current tropics, CAPE tends to be dominated
by high buoyancy over about 10 km in the upper troposphere, the depth of which is small compared to
20-30 km. Therefore, for a first-order approximation of CAPE, it is appropriate to calculate adiabatic-
parcel ascent using strict conservation of MSE.

16The values of q∗v [pu(T ), T ] and q∗v [pe(T ), T ] are related to each other by
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Fig. 1.9 For a = 0.2 and surface temperatures (really, cloud-base temperatures) of Ts = 290,

300, and 310 K, profiles of (solid) environmental and non-entraining-parcel temperature pro-

files calculated using the analytical expression in equation (11) of Romps (2016) and (dashed)

dry adiabats. Note that CAPE is proportional to the shaded area between the two tempera-

ture profiles.

q∗v [pu(T ), T ] =
Rp∗v(T )

Rvpu(T )

≈
Rp∗v(T )

Rv {pe(T )− [zu(T )− ze(T )]ρeg}

≈
Rp∗v(T )

Rvpe(T ) {1− [zu(T )− ze(T )]g/RT}

≈
Rp∗v(T )

Rvpe(T )
{1 + [zu(T )− ze(T )]g/RT}

≈ q∗v [pe(T ), T ] {1 + [zu(T )− ze(T )]g/RT} .

Using this more accurate expression for q∗v [pu(T ), T ], we get

∆z =
a

1 + a

L

g
(

1 +
Lq∗v
RT

) (
q∗v,cb − q

∗
v

)
.
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To get CAPE, we need the area between the two temperature curves plotted on z
and T axes. This is usually expressed as

CAPE ≈ g

T0

∫ tropopause

cloud base

dz∆T (z) , (1.100)

where T0 is a characteristic tropospheric temperature (e.g., the average of the surface
and tropopause temperatures), the tropopause is the assumed level of neutral buoy-
ancy for the undiluted plume, and ∆T (z) is the temperature difference between the
undiluted plume and the environment at height z. But, another way to write this is

CAPE ≈ g

T0

∫ Tcloud base

Ttropopause

dT ∆z(T ) . (1.101)

The integrals in (1.100) and (1.101) are identical. For our purposes, though, it is much
more convenient to evaluate the integral in equation (1.101). Plugging in our expression
for ∆z, this becomes

CAPE ≈ g

T0

∫ Tcloud base

Ttropopause

dT
a

1 + a

L

g

(
q∗v,cb − q∗v

)
.

Over most of the temperature range of the troposphere, q∗v � q∗v,cb, so we can further
approximate this as

CAPE ≈ g

T0

∫ Tcloud base

Ttropopause

dT
a

1 + a

L

g
q∗v,cb .

At this point, nothing inside the integral depends on T , so this integrates trivially to
give

CAPE ≈ a

1 + a
Lq∗v,cloud base

Tcloud base − Ttropopause

T0
. (1.102)

As expected, CAPE increases with the entrainment rate, i.e., with a. Most importantly,
we see that CAPE increases in proportion to q∗v at the cloud base; this means that
CAPE experiences Clausius-Clapeyron scaling, increasing exponentially with surface
temperature, which is closely tied to the cloud-base temperature. This dependence of
CAPE on surface temperature is illustrated in Figure 1.10; note the log axis. This
exponential dependence on surface temperature has implications for the intensity of
storms since CAPE is the reservoir of energy that storms can tap to generate damaging
winds, hail, and lightning.

By comparison to (1.99), we see that accounting for the difference between q∗v [pu(T ), T ] and
q∗v [pe(T ), T ] modifies ∆z by a factor of 1 + Lq∗v/RT . At 300 K, Lq∗v/RT is about 1/2, and it de-
cays exponentially as temperature decreases. Therefore, over the vast majority of the troposphere for
cloud-base temperatures below about 310 K, we can ignore this factor.
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Fig. 1.10 CAPE as a function of surface temperature Ts (really, cloud-base temperature) for

a = 0.2 as calculated using (black solid) numerical integration, (blue dashed) the analytical

expression for CAPE given by equation (12) of Romps (2016), and (red dotted) the approx-

imate analytical expression for CAPE in equation (17) of Romps (2016), which exhibits CC

scaling. Also plotted is (purple dashed-dotted) the simple approximation for CAPE given

here in equation (1.102). Adapted from Figure 5 of Romps (2016).

1.14 Future directions

Toy models of the atmosphere, e.g., parcel models, Boussinesq equations, and bulk-
plume equations, are powerful tools for guiding our understanding of the atmosphere.
As we have seen here, these models have provided explanations for the energy balance
of the tropical troposphere, the “melting” of tropospheric gravity waves, the temper-
ature structure of the convecting tropical atmosphere, the relative humidity profile in
the tropics, and the processes that set CAPE. Despite this progress, however, there
are many questions left to answer. An exhaustive list is impossible, but we can list a
few here that relate to the topics covered in these lectures. With regards to the leaky
lid, how does energy apportion between tropospheric and stratospheric heating, the
latter caused by the breaking of vertically propagating wave energy? What sets the
profile of cloudiness from detrained convection, and how does it relate to the profile
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of relative humidity? What determines the spectrum of cloud updraft sizes? If CAPE
sets the upper limits on updraft buoyancy and speed, what determines the spectrum
of actual cloud buoyancies and speeds? What determines the convective entrainment
rate? And, which results can be extended to the midlatitudes, where planetary rota-
tion is important? There is much to do, and simple, analytic models will continue to
play an essential role in future progress.
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