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ABSTRACT

The Gregory–Kershaw–Inness (GKI) parameterization of convective momentum transport, which has

a tunable parameter C, is shown to be identical to a parameterization with no pressure gradient force and

a mass flux smaller by a factor of 1 2 C. Using cloud-resolving simulations, the transilient matrix for mo-

mentum is diagnosed for deep convection in radiative–convective equilibrium.Using this transilient matrix, it

is shown that the GKI scheme underestimates the compensating subsidence of momentum by a factor of 12
C, as predicted. This result is confirmed using a large-eddy simulation.

1. Introduction

As clouds convect, they transport horizontal momentum

in the vertical. This process is referred to as convective

momentum transport (CMT), and several schemes for pa-

rameterizing its effect have been proposed (e.g., Schneider

and Lindzen 1976; Zhang and Cho 1991; Gregory et al.

1997, hereafter GKI) for use in general circulation

models (GCMs). It has been shown that the choice of

CMT scheme can have a significant impact on both the

mean climate (Wu et al. 2007; Richter and Rasch 2008;

Kim et al. 2008) and the interseasonal variability (Neale

et al. 2008; Kim et al. 2008). This paper is motivated by

this demonstrated impact of CMT on climate simulations

and the uncertainty surrounding how to parameterize it.

It has been known for many years that organized con-

vective systems, such as squall lines, can intensify existing

shear by transporting momentum upgradient (Moncrieff

and Miller 1976; LeMone 1983; Moncrieff 1992). These

systems have been studied using both observations (e.g.,

Sanders andEmanuel 1977; Lin et al. 1986) andnumerical

simulations (e.g., Moncrieff and Miller 1976; Lafore et al.

1988). In contrast, unorganized convection tends to trans-

port momentum downgradient (Lemone et al. 1984), but

there is no consensus on how to parameterize this pro-

cess. In this paper, we will study CMT in unorganized

convection with the aid of a cloud-resolvingmodel, which

has proven to be a useful tool in the study of momentum

transport (e.g., Soong and Tao 1984; Tao and Soong

1986; Mapes and Wu 2001; Robe and Emanuel 2001;

Zhang and Wu 2003; Lane and Moncrieff 2010). The

goal is to learn how best to parameterize CMT in general

circulation models.

Clouds and the environment exchange horizontal mo-

mentum through twomechanisms. The firstmechanism is

the physical exchange ofmass via convective entrainment

and detrainment. In the bulk-plume equations, the hori-

zontal force induced by this exchange is uniquely speci-

fied by the entrainment and detrainment rates. The second

mechanism is the horizontal pressure force, which relaxes

the cloud momentum and environmental momentum to-

ward one another by equal and opposite measure. Here,

we consider two schemes that differ in their treatment of

the pressure gradient force.

The first approach represents the pressure force as

some function of the difference in horizontal velocity

between the cloud and the environment,

F5F(y2 yc) ,

where y and yc are the environmental wind and cloud

wind, respectively. We will refer to this type of parame-

terization as a drag-law (DL) scheme. Drag-law schemes

have been used in the modeling of momentum transport

formany decades (e.g.,Malkus 1952;Newton andNewton

1959; Hitschfeld 1960; Newton 1966; Austin and Houze

1973; Houze 1973; Sui et al. 1989). Included within the
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set of DL schemes is the zero-drag (ZD) approximation

(Schneider and Lindzen 1976; Shapiro and Stevens 1980;

Sui et al. 1989), defined as

F5 0,

which is a suitable approximation for sufficiently large

updrafts (Newton and Newton 1959; Hitschfeld 1960).

The second approach, due to GKI, is to approximate

the pressure force as proportional to the updraft velocity

and the environmental shear, which gives

F5CM›zy ,

where C is a positive constant,M is the convective mass

flux, and y is the environmental wind. This is the default

scheme in the Community Atmosphere Model, version

5.1 (CAM5.1; Neale et al. 2010). Note that this repre-

sentation of the pressure force has no dependence on yc.

This can lead to some unusual consequences: if a cloud is

both rising andmoving relative to the air in the direction

of shear, then this force would accelerate the cloud

rather than decelerate it.

The theoretical underpinnings for the GKI scheme

are an analysis of linearized equations and a dominant-

balance argument for the Poisson equation for pressure.

In the analysis of linearized equations, the base state is

an atmosphere with vertical shear but no vertical motion

(Rotunno and Klemp 1982; Wu and Yanai 1994). Since

the linearized equations cannot represent convective

momentum transport (which would be quadratic in the

deviations), it is not clear how relevant this analysis is to

CMT. In the dominant-balance argument, several terms

are discarded (including those responsible for all of the

form drag in 2D and most of the form drag in 3D) to

arrive at an approximate Poisson equation, defined as

2=2(p9/r)’ 2›zuh � $hw ,

where a subscript h denotes horizontal vector compo-

nents. It is then assumed that ›zuh is equal to the vertical

shear in the environment, as motivated by the linear

analysis (LeMone et al. 1988, p. 323). There is no con-

sensus on the value of C, with GKI recommending C 5
0.7, Zhang and Wu (2003) suggesting C 5 0.55, and

CAM using C 5 0.4 (Neale et al. 2010). With in situ

observations of the pressure field around storms (e.g.,

Ramond 1978; LeMone et al. 1988; Jorgensen et al.

1991), it is difficult to differentiate between competing

theories in the absence of veering or backing winds. A

compelling, albeit anecdotal, piece of evidence comes

from Fig. 11 of Rotunno and Klemp (1982), where the

pressure gradient in a simulated storm aligns more with

the environmental shear than with the relative motion

between storm and environment.

What we will see in section 2 is that the zero-drag and

GKI schemes are equivalent, in the sense that the GKI

scheme, with its tunable parameter C, predicts a CMT

that is equal to 1 2 C times that predicted by the ZD

scheme. In other words,

›tyjGKI 5 (12C)›tyjZD .

Section 3will introduce the concept of a ‘‘transilientmatrix

formomentum.’’ Thismatrixwill be diagnosed fromcloud-

resolving simulations and will show that the GKI scheme

underestimates the compensating subsidence of momen-

tum by a factor of 1 2 C. Section 4 will demonstrate this

same result from a high-resolution large-eddy simulation

(LES). Finally, the results will be summarized in section 5.

2. Equivalence of ZD and GKI schemes

Let us approximate the atmosphere by two parts: cloud

and environment. Using the standard bulk-plume model,

we assume that vertical velocity and horizontal velocity

are uncorrelated within each of those two classes. The

continuity equations for cloud and environment are then

›t(scr)1 ›z(scrwc)5 e2 d

›t(ser)1 ›z(serwe)5 d2 e

and the corresponding horizontal momentum equations

are

›t(scryc)1 ›z(scrycwc)5 eye 2 dyc1F

›t(serye)1 ›z(seryewe)5 dyc 2 eye 2F .

Here, sc(z) is the fractional area of cloud and se 5 1 2
sc is the fractional area of environment. The entrain-

ment and detrainment rates (kg m23 s21) are denoted

by e and d, respectively. The horizontal and vertical

velocities are denoted by y and w with subscripts c and e

to denote cloud and environment, respectively, and F is

the horizontal force per volume between cloud and en-

vironment.

Assuming that clouds adjust much faster to a steady

state than the environment does, we can drop the ten-

dency terms in the cloud momentum equation and the

two continuity equations.We also assume thatsc� 1, so

we can approximate se by 1. For notational simplicity,

we will now drop the e and c subscripts from all variables

except yc: from here on, s and w are understood to be

the cloud fractional area and cloud vertical velocity,
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respectively, and y is the environment’s horizontal wind

speed. This simplifies the equations to

›zM5 e2 d (1)

r›ty5 ›z[M(y2 yc)] (2)

›zyc 5 «(y2 yc)1F/M , (3)

whereM5 srw is the convective mass flux and «5 e/M

is the fractional entrainment rate. Given the profiles of

M and «, the key to evaluating the tendency of the en-

vironmental wind is to calculate yc from Eq. (3).

The zero-drag scheme is described by Eqs. (1)–(3)

with F set to zero. We can integrate Eq. (3) with F5 0 to

give

yc(z)5 y(z0)e
2
Ð z

z0
dz9«(z9)

1

ðz
z
0

dz9«(z9)y(z9)e
2
Ð z

z9
dz0«(z0)

, (4)

where we have assumed that yc(z0) 5 y(z0). Using Eqs.

(1) and (4) in Eq. (2), and defining the fractional de-

trainment rate d 5 d/M, we get

r›ty(z)5M(z)½2d(z)y(z)1 ›zy(z)

1 d(z)y(z0)e
2
Ð z

z0
dz9«(z9)

1 d(z)

ðz
z
0

dz9«(z9)y(z9)e
2
Ð z

z9
dz0«(z0)� . (5)

Note that yc has been eliminated. This equation gives the

tendency of y(z) as a function of y(z9) for all z9 2 [z0, z].

The GKI scheme is described by Eqs. (1)–(3) with F5
CM›zy, whereC is a constant. IntegratingEq. (3)withF5
CM›zy gives

yc(z)5Cy(z)1 (12C)y(z0)e
2
Ð z

z0
dz9«(z9)

1 (12C)

ðz
z
0

dz9«(z9)y(z9)e
2
Ð z

z9
dz0«(z0)

, (6)

where we have used the same boundary condition of

yc(z0) 5 y(z0). Using Eqs. (1) and (6) in Eq. (2), we get

r›ty(z)5 (12C)M(z)½2d(z)y(z)1 ›zy(z)

1 d(z)y(z0)e
2
Ð z

z0
dz9«(z9)

1 d(z)

ðz
z
0

dz9«(z9)y(z9)e
2
Ð z

z9
dz0«(z0)� . (7)

This is exactly the same as the ZD solution in Eq. (5),

except that the right-hand side is multiplied by 1 2 C.

Therefore, for a given mass flux and entrainment rate,

the wind tendency predicted by the GKI scheme is

identical to 12 C times the wind tendency predicted by

the ZD scheme.

Since these two schemes differ by 12C, we should be

able to identify which is more accurate by comparing

against cloud-resolving and large-eddy simulations. We

can accomplish this by applying a horizontal force to

a convecting atmosphere and then evaluating how con-

vection redistributes that horizontal momentum. In par-

ticular, wewill want to focus on the effect of compensating

subsidence, which is represented by the ›zy terms in Eqs.

(5) and (7). There are several reasons for focusing on this

term. For one, this term often plays a dominant role in

convective momentum transport (Mapes and Wu 2001).

Therefore, modeling this term correctly in a CMT scheme

is of paramount importance. In addition, the effect of this

term is relatively easy tomeasure and interpret: unlike the

other terms in Eqs. (5) and (7), which involve « and d, the

subsidence term involves only ›zy and M, both of which

are easy to calculate in a numerical simulation. Although

« and d can be measured directly using the methods of

Romps (2010) and Dawe and Austin (2011), it is not

obvious how to relate these directlymeasured rates to the

effective rates appropriate for a bulk-plume model such

as Eqs. (1)–(3): Romps (2010) and Dawe and Austin

(2011) showed that the directly measured values can

differ significantly from the effective rates for the bulk-

plume equations. Furthermore, the pressure force can

alias onto « and d. For small y 2 yc, a pressure force F

that is a function of y 2 yc can be Taylor expanded to

give F5 bM(y2 yc), for some b(z). In this case, Eqs. (5)

and (7) get modified by replacement of « and d with «1
b and d1 b, respectively. Note that the subsidence term

is the one term whose interpretation is not complicated

by the pressure force. Therefore, when y2 yc is small, in

the sense thatF can be linearized, aDL scheme generates

the same compensating subsidence as the ZD scheme. In

summary, we will focus on the subsidence term because

it is of great dynamical significance, its coefficient is

straightforward to measure, and it is straightforward to

interpret.

FromEq. (5), we see that the ›zy term in theZD scheme

(and general DL schemes with small y 2 yc) causes the

wind profile to sink at a speed ofM/r. FromEq. (7), we see

that the GKI scheme causes the wind profile to sink at

a speed of (1 2 C)M/r. Our goal, then, is to diagnose the

actual speed of momentum subsidence in cloud-resolving

simulations to compare against these two predictions.

Naively, we might consider initializing a cloud-resolving

simulation with some wind profile and then watching as

the wind profile descends with time. Unfortunately, there

are effects in addition to compensating subsidence—that
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is, the other terms in Eqs. (5) and (7)—that make the

evolution of the wind profile more complicated than pure

subsidence. To isolate the effect of the ›zy term in cloud-

resolving simulations, we will diagnose the transilient

matrix (TM) for momentum.

3. Transilient matrix

Let us first define what we mean by a TM for momen-

tum. The concept of a TM for mass was first introduced

by Stull (1984), and it was shown by Romps and Kuang

(2011) how to diagnose this matrix for moist convection.

In general, a transilient matrix is the discretization of

a transilient function (TF), which provides a linear map

from the horizontally averaged profile of some quantity

to the tendency of that profile due to convection. For ex-

ample, the TF for horizontal momentum b(z, z9) is im-

plicitly defined as

r›ty(z)jdue to convection5

ð
dz9b(z, z9)y(z9) ,

where y is the horizontally averaged wind in a particular

direction. Similarly, the TM for horizontal momentum

bij is implicitly defined as

ri›tyijdue to convection 5 �
j
Dzjbijyj ,

where i and j index vertical levels.

Note that Eqs. (5) and (7) can be written in terms of

a transilient function. For the ZD scheme, b(z, z9) is

given by

b(z, z9)52d(z)dD(z92 z)2M(z)›z9dD(z92 z)

1d(z)e
2
Ð z

z0
dz0«(z0)

dD(z92 z0)

1d(z)«(z9)e
2
Ð z

z9
dz0«(z0)H(z92z0)H(z2z9) , (8)

where dD is the Dirac delta function and H is the

Heaviside step function. For a given z, b(z, z9) is a sum of

local distributions containing dD(z9 2 z), which gathers

information on y only in the immediate vicinity of z (first

two terms); dD(z9 2 z0), which depositsmomentum from

z0 (third term); and a nonlocal distribution that samples

y at all z92 [z0, z] (fourth term). TheGKI scheme can be

written in terms of a transilient function that is identical

to Eq. (8) except for an overall coefficient of 12 C. For

DL schemes with small y 2 yc, the transilient function is

given by Eq. (8) with the entrainment and detrainment

rates modified by the addition of the linearized pressure

force coefficients. For a discrete vertical grid, b(z, z9)
becomes a matrix bij, whose indices range over the

vertical levels. By generalizing the method of Romps

and Kuang (2011), we can diagnose this matrix directly

from cloud-resolving simulations.

In Romps and Kuang (2011), it was possible to di-

agnose the TM formass in a single simulation by injecting

a unique radioactive tracer into each of the N vertical

levels. Each tracer was advected passively with the flow

with a steady source at its injection level and radioactive

decay everywhere; the resulting distribution of tracers

was used to infer bij. Note, however, that the TM for

momentum is not, in general, the same as theTM formass.

This is because momentum can be transmitted between

two parcels without exchanging any mass. Therefore, to

diagnose a TM for momentum, it is not possible to use

artificial tracers. Instead, we must use momentum as its

own tracer. In this approach, horizontal momentum is

uniformly injected into a vertical level (i.e., the air in

that level is accelerated) and the horizontally averaged

momentum is damped to zero with a time scale of 12 h,

which is long compared to the time scale for vertical

transport in a cloud [see the discussion in Romps and

Kuang (2011)].

Since there are only two independent components of

momentum (x and y), we must run multiple simulations.

In principle, N/2 simulations could be run, where N is the

number of vertical levels. For simplicity, however, N

simulations are run, each of which has x momentum in-

jected into a corresponding level. The cloud-resolving

model used for these simulations is Das Atmosphärische

Modell (DAM; Romps 2008). The simulations use the

same doubly periodic domain (32 km3 32 km3 30 km),

grid spacings (2-km horizontal, variable vertical), radia-

tion (equator, 1 January, no diurnal cycle), and lower

boundary (300-K ocean) as used by Romps and Kuang

(2011), which gives deep marine convection in radiative–

convective equilibrium (RCE). To simplify the analysis of

the momentum budget, the lower boundary is specified

to be free slip. To avoid feedbacks on the surface fluxes,

a bulk aerodynamic formula is used with a fixed wind

speed of 5 m s21.

The transilient matrix is a linear operator, which im-

plies that the quantity being transported by convection

does not affect the convection itself. For horizontal

momentum, this is not necessarily the case: a sufficiently

large shear can blow apart convecting clouds, altering

the convective mass fluxes. Therefore, we wish to use an

applied force that is small enough to ensure the passivity

of momentum transport. However, we also want a good

signal-to-noise ratio in the resulting wind profile, which is

obtained with a stronger applied force. This trade-off is

explored using nine different sets of simulations, each with

a different magnitude of forcing applied to a single vertical

level. The applied forcing ranges from 3.125 3 1025 to
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83 1023 m s22 by factors of 2. Since there are 64 vertical

levels in the cloud-resolving simulation, this requires

643 95 576 cloud-resolving simulations, each ofwhich is

run for 60 days with the first 2 days discarded as spinup.

Figure 1 shows the peak value of the steady-state wind

profile y normalized by the applied forcing A, plotted as

a function of applied forcing. There are 64 curves, each

corresponding to the forcing being applied to a particu-

lar level. If the response were linear, as desired, then the

curves would all be flat at a normalized value of one. Up

to an applied forcing of about 5 3 1024 m s22, the re-

sponse remains linear for most levels, so this is the ac-

celeration used in the calculation of the transilientmatrix.

The three levels with the largest deviations from linearity

are the lowest three layers, which suggest that the tran-

silient matrix may not be as reliable in the vicinity of the

surface.

Now, let S(z) be a constant external source of hori-

zontal momentum and let t be the time scale over which

momentum is damped to zero. Then, the mean wind

profile y(z, t) evolves as

›t[r(z)y(z, t)]5S(z)2 r(z)y(z, t)/t1

ð
dz9b(z,z9)y(z9, t) ,

where the three terms on the right-hand side correspond

to the external forcing, Rayleigh damping, and convective

momentum transport, respectively. Following Romps

and Kuang (2011), we can discretize this equation

into N height levels (corresponding to the N levels

of the cloud-resolving simulation). By diagnosing the

wind profile from N different simulations (each with

a different and linearly independent profile S), we can

assemble the N equations for y into a matrix equation

that can be solved for bij. Analogous to Eq. (9) in Romps

and Kuang (2011), the transilient matrix for momentum

is diagnosed as

bij 5
1

Dzj
�
k

h
›t(riyik)1

riyik
t

2 Sik

i
(y21)kj , (9)

where yik is the horizontally averaged x velocity at height

i in simulation k, Sik is the applied acceleration at height i

in simulation k (Sik5 adik, where a/ri5 53 1024 m s22),

ri is the air density at height i, Dzj is the vertical grid

spacing at height j (ranging from 50 m near the surface

to 500 m in the midtroposphere to 1000 m in the

stratosphere), and t is the damping time of 12 h. Each

simulation was run for 2 months with the yik and ›tyik
averaged over all but the first 2 days, which were

discarded as spinup. Putting the resulting yik and ›tyik
into Eq. (9) gives the result shown in Fig. 2. The left

panel displays the matrix in units of kg m24 s21. Hewing

to convention, the matrix is displayed upside down so

that the destination height (on the y axis) increases up-

ward. The right panel plots a sample row of the matrix.

As we see from Fig. 2, the most prominent matrix

elements are in the vicinity of the diagonal. These

elements constitute the local operators, which are larger

than other elements of the matrix because they contain

factors of 1/Dz. For example,
Ð
dz9b(z, z9)f (z9) acts

as the unit operator on f when the transilient function

b(z, z9) is a delta function, which corresponds to a tran-

silient matrix with 1/Dz on the diagonal. Other local

operators—such as ›z and ›2z—are represented in bij by

the finite-difference approximations to those derivatives.

The order of accuracy of these stencils will depend on the

highest-order local operator that is contained in the

matrix. Table 1 gives examples of the mappings between

operators, transilient functions, and transilient matrices

for the case of a constant vertical grid spacing and with

local operators confined to a three-point stencil (i.e., in

which the highest-order operator is ›2z).

It is clear from the second panel of Fig. 2 that the local

operators occupy a five-point stencil. For each row of bij,

the five elements fbi,i22, . . . , bi,i12g form a stencil that

can be decomposed into operators proportional to 1, ›z,

›2z, ›
3
z, and ›4z (see appendix A).Wewrite the coefficients

of these operators as c0 through c4. These coefficients

will, in general, be a function of height. For our pur-

poses, we are interested in c1(z) because this is the co-

efficient of ›z, the operator corresponding to subsidence.

The drag-law scheme predicts that the wind profile

FIG. 1. Ratio of the maximum value of y divided by the applied

forcingA, and normalized by the value of this ratio for the smallest

forcing (an acceleration of 3.125 3 1025 m s22). Each curve cor-

responds to a set of cloud-resolving RCE simulations in which the

forcing is applied to a particular vertical level.
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subsides at a speed of c1/r 5 M/r, and the Gregory–

Kershaw–Inness scheme predicts c1/r 5 (1 2 C)M/r.

Figure 3 plots the value of c1/r diagnosed from the

transilient matrix (solid line). This is the speed at which

momentum subsides in the cloud-resolving simulations.

The dashed line plots the speed M/r at which mass

subsides, which is also theDL prediction for the speed of

momentum subsidence. Here, the convective mass flux

M is diagnosed as the horizontally and temporally aver-

aged value of Arw, where A is unity where w $ 1 m s21

and the condensed-water mixing ratio qc satisfies

qc $ 1025 kg kg21, and is zero elsewhere (e.g., Romps

andKuang 2010). Overall, we see that theDL prediction

is an excellent match with the diagnosed subsidence.

Themain differences are found in and above the tropical

tropopause layer (TTL) and in the subcloud layer. In the

TTL and above, the transilient matrix reports a small

downward subsidence ofmomentum, presumably due to

the action of gravity waves. Below the cloud base, which

is located at 500 m, the DL prediction is zero because

there is no cloud mass flux. Dry eddies are likely re-

sponsible for the momentum subsidence seen there. In

the cloud layer, we can conclude that momentum sub-

sides at the same speed as mass. The GKI prediction for

the speed of momentum subsidence (dotted line) is too

small by a factor of 1 2 C.

4. Large-eddy simulation

We can also confirm this result in a large-eddy simu-

lation. Unfortunately, LES is too computationally ex-

pensive to allow for constructing a transilient matrix,

which requires as many simulations as there are vertical

levels. Instead, we can examine the response to an applied

FIG. 2. (left) TM for momentum diagnosed from the cloud-resolving model (kg m24 s21). (right) A row of the matrix

for a destination height of 6.4 km.

TABLE 1. The correspondence between local operators, the TF,

and the TM in the case of a constant vertical spacing D and with

operators confined to a tridiagonal.

Operator b(z, z9) ( . . . , bi,i21 , bi,i , bi,i11 , . . . )

1 dD(z 2 z9)
�
. . . , 0 ,

1

D
, 0 , . . .

�

›z 2›z9dD(z 2 z9)

�
. . . , 2

1

2D2
, 0 ,

1

2D2
, . . .

�

›2z ›2z9dD(z2 z9)

�
. . . ,

1

D3
,2

2

D3
,

1

D3
, . . .

�
FIG. 3. Speed at which the wind profile subsides (c1/r) as mea-

sured by the TM diagnosed from cloud-resolving simulations

(solid).Also shown are theDLprediction ofM/r for the subsidence

speed (dashed), and the GKI prediction of (1 2 C) M/r with C 5
0.7 (dotted).
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forcing in a single simulation and compare the resulting

winds to the predictions from the CMT schemes.

The LES used here has a horizontal grid spacing of

200 mand a vertical spacing of 50 mbetween 3 and 15 km.

The doubly periodic horizontal domain is 38.4 km 3
38.4 km, and the model top is at 30 km. An acceleration

of a 5 5 3 1024 m s22 (the same as in the previous

section) is applied on a single grid level at 6 km, which

corresponds to an applied external force of A 5 arDz 5
0.016 N m22. As in the previous section, the horizontally

averagedmomentum is damped to zero on a time scale of

t 5 12 h. The simulation is run to equilibrium for over

a week, and statistics are collected over the last 3 days.

Qualitatively, what sort of steady-state wind profile

should we expect from this simulation? Applying an ex-

ternal forceA (N m22) at injection height zi, damping the

wind to zero over a time scale t, and assuming a steady

state, Eqs. (2) and (3) become

05 ›z[M(y2 yc)]1AdD 2 ry/t (10)

›zyc 5 «(y2 yc)1F/M , (11)

where dD5 dD(z2 zi) is centered on zi. For themoment,

let us assume that F 5 0. As shown in appendix B, the

full analytical solution to these equations for zero F and

constant M, «, and r is

y5
«1 lsign(z

i
2z)

l1 2 l2

A

M
exp[lsign(z

i
2z)(z2 zi)] , (12)

yc 5
«

l12 l2

A

M
exp[lsign(z

i
2z)(z2 zi)] , (13)

where

l65
r

2Mt

�
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 4M«t/r

p �
. (14)

Equation (12) for y takes the form of two exponentials

stitched together discontinuously at zi. Equation (13) for

yc takes the form of two exponentials stitched together

continuously at zi.

In this solution, the ratio of the wind speed y just

above zi to the wind speed just below zi is equal to

2x1 12
ffiffiffiffiffiffiffiffiffiffiffiffiffi
11 4x

p

2x1 11
ffiffiffiffiffiffiffiffiffiffiffiffiffi
11 4x

p , (15)

where x 5 M«t/r. This ratio is plotted in Fig. 4. For

tropical RCE, typical midtropospheric values are M 5
0.01 kg m22 s21, r 5 0.5 kg m23, and « ( 1 km21. For

t 5 12 h as used here, M«t/r ( 1. According to Fig. 4,

this means that the wind speed just above zi is(10% the

wind speed just below zi. Therefore, we can approximate

the solution for y to within an error of 10% by setting «

to zero. This gives

y5
A

M
exp

h r

Mt
(z2 zi)

i
H(zi 2 z) , (16)

yc 5 0. (17)

In this approximation, convection acts only to advect the

wind profile downward with the speed M/r.

A similar conclusion applies to the case where the

pressure force on the cloud is described by some function

F(y 2 yc). For sufficiently small y 2 yc, we can Taylor

expand F. Noting that F(0) 5 0 by symmetry, the Taylor

expansion to first order gives F 5 F9(0)(y 2 yc). Adding

this pressure force simply modifies Eqs. (12) and (13) by

replacement of « with «1 F9(0)/M. Therefore, Eq. (16) is

a good approximation so long as [M« 1 F9(0)]t/r ( 1.

Figure 5 shows the full analytical solution [Eqs. (12) and

(13)] and the simplified analytical solution [Eqs. (16)

and (17)] for the values ofM, r, and « diagnosed at 6 km

in the LES. For the full analytical solution, the value of «

is calculated using the direct measurement technique of

Romps (2010). As expected, the full and simplified an-

alytical expressions for y are in close agreement. This is

the shape of the wind profile y that we should expect to

see in both the LES and a faithful CMT scheme.

The average wind profile y from the LES is shown in

Fig. 6 as the solid line. As in Fig. 5, the simplified analytical

expression is plotted as the dashed line. We see that the

simplified analytical expression does an excellent job of

predicting the shape of the LES wind profile y. Since the

shape and magnitude of the analytical profile is set by the

FIG. 4. Equation (15) plotted as a function ofMt«/r, which gives,

for the full analytical solution in Eq. (12), the ratio of the wind speed

just above the applied acceleration to the wind speed just below.
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subsidence rateM, this confirms that momentum subsides

at a speed equal toM/r. In addition, the similarity between

theLES y in Fig. 6 and the full analytic y in Fig. 5 is striking.

In contrast, the simplified y profile predicted by the

GKI scheme is given by Eq. (16) with M replaced by

(1 2 C)M. This prediction is shown in Fig. 6 as a dotted

line. This confirms the conclusion from section 3: param-

eterizing the pressure gradient force as F 5 CM›zy, as in

the GKI scheme, causes the wind profile to subside too

slowly by a factor of 1 2 C.

5. Summary and discussion

We have seen that the Gregory–Kershaw–Inness

(GKI) scheme for convective momentum transport

(Gregory et al. 1997), which is the default in CAM5.1, is

exactly proportional to the zero-drag (ZD) scheme,

which has no parameterization of the pressure force.

That constant of proportionality is 1 2 C, where C is

specified to be 0.7 byGKI andRichter andRasch (2008),

and 0.55 by Zhang and Wu (2003). In CAM5.1, C is set

to 0.4. The findings presented here suggests thatC should

be set all the way to zero, which would make the GKI

scheme identical to the ZD scheme. This fits well with the

results of Richter and Rasch (2008), who found that the

ZD scheme (which they refer to as SL76) produced amore

realistic climate than the GKI scheme (which they refer to

as GKI97). Setting C to zero also eliminates a potential

numerical instability in the GKI scheme (Kershaw et al.

2000).
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APPENDIX A

Operator Decomposition

Given the discretization qi 5 q(zi) for i 5 1, . . . , N of

some profile q(z), the derivatives up to fourth order of

q(z) at zi can be approximated by0
BBBB@

q (zi)

›zq(zi)

..

.

›4zq(zi)

1
CCCCA’S

0
BBBB@

q i22

qi21

..

.

qi12

1
CCCCA ,

where S is a stencil matrix. Since S is a nondegenerate

matrix, there exist coefficients cip 5 cp(zi) such that

FIG. 5. (left) Environmental wind speed and (right) cloud wind speed for the full analytic solution in

Eqs. (12) and (13) (solid), and the simplified analytic solution in Eqs. (16) and (17) (dashed).

FIG. 6. Environmental wind speed as diagnosed in the LES

(solid), as predicted by the simple theory of Eq. (16) (dashed), and

as predicted by the GKI scheme (dotted), which is Eq. (16) withM

replaced by (1 2 C) M for C 5 0.7.

3498 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 69



ð
dz b(zi, z)q(z)’ �

j
Dzjbijqj 5 �

5

p51

Dzi1p23bi,i1p23qi1p231NLT5 �
5

r,p51

ci,r21Srpqi1p23 1NLT

’ �
5

r51

cr21(zi)›
r21
z q(zi)1NLT,

where

NLT5 �
j;[i22,i12]

Dzjbijqj

are the nonlocal terms. We see that the near-diagonal

elements of b can be expressed in terms of the co-

efficients (c0, c1, . . . , c4) of local operators (1, ›z, . . . , ›
4
z),

where the coefficient cp has units of kg mp23 s21. These

coefficients are related to the transilient matrix via

cr21(zi)5 �
5

p51

bi,i1p23Dzi1p23Tpr ,

where T[ S21 is the matrix of Taylor series coefficients.

APPENDIX B

Analytical Wind Profile

Consider Eqs. (10) and (11) withM, «, r, and t that are

constant with height and F 5 0. Assuming that yc(z0) 5
y(z0) for some z0, we can integrate Eq. (11) to give

yc(z)5 «e2«z

ðz
z
0

dz9 e«z9y(z9)1 e2«(z2z
0
)y(z0) . (B1)

Plugging this into Eq. (10) gives

M›zy(z)1M«2e2«z

ðz
z
0

dz9 e«z9y(z9)2M«y(z)

1M«e2«(z2z
0
)y(z0)2 r(z)y(z)/t1AdD 5 0. (B2)

When A 5 0, we can look for solutions of the form y 5
elz. For y(z0)5 0 and z far from z0, in the sense that (z2
z0)r/Mt� 1, y5 el1z, and y5 el2z are solutions whenA

5 0 and

l65
r

2Mt

�
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 4M«t/r

p �
.

For A 6¼ 0, the solution can be found by stitching to-

gether these two exponential solutions to either side of

zi. To satisfy the requirement that y 5 0 at z 5 6‘, we
need to use l1 for z, zi and l2 for z. zi. Let us denote

the amplitude of y just below and above zi by C1 and C2,

respectively. Integrating Eq. (B2) over an infinitesimal

height interval centered on zi reveals that C1 5 C2 1
A/M. When we integrate Eq. (B2) over all heights (again,

neglecting terms involving an exponential of z0), we find

that the sum of the first four terms integrate to zero

identically. This is a consequence of the fact that those

terms represent the rearrangement of momentum in the

vertical: they cannot generate a net source or sink of

momentum. Therefore, the integral of Eq. (B2) over all

z reduces to

05

ð‘
z
0

dz
�
2
ry

t
1AdD

�
5A2

r

t

�
C1

l1
2

C2

l2

�
.

Using C1 5 C2 1 A/M reveals the solution given in Eq.

(12). Substituting this expression into Eq. (B1) gives

Eq. (13).
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