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ABSTRACT

Lagrangian particle tracking is used in a large-eddy simulation to study an individual cumulus congestus.

This allows for the direct measurement of the convective entrainment rate and of the residence times of

entrained parcels within the cloud. The entrainment rate obtained by Lagrangian directmeasurement is found

to be higher than that obtained using the recently introduced method of Eulerian direct measurement. This

discrepancy is explained by the fast recirculation of air in and out of cloudy updrafts, which Eulerian direct

measurement is unable to resolve. By filtering these fast recirculations, the Lagrangian calculation produces

a result in very good agreement with the Eulerian calculation.

The Lagrangianmethod can also quantify some aspects of entrainment that cannot be probedwith Eulerian

methods. For instance, it is found thatmore than half of the air that is entrained by the cloud during its lifetime

is air that was previously detrained by the cloud. Nevertheless, the cloud is highly diluted by entrained air: for

cloudy air above 2 km, its mean height of origin is well above the cloud base. This paints a picture of a cloud

that rapidly entrains both environmental air and its own detritus.

1. Introduction

A recent large-eddy simulation (LES) of deep atmo-

spheric convection has revealed fractional entrainment

rates at the astonishingly high rate of about 1 km21

throughout the depth of the troposphere (Romps 2010).

Those rates were obtained using a technique referred to

as ‘‘direct measurement’’ of entrainment. Although the

method has been validated in the case of shallow cu-

mulus (Dawe and Austin 2011a), no such independent

validation has yet been made for deeper convection.

Here, we validate the previous results in an LES of

a single cumulus congestus using a new and independent

method: direct measurement of entrainment with mass-

less Lagrangian particles.

Recent evidence has also indicated that convective

clouds entrain a substantial amount of air whose equiv-

alent potential temperature ue is substantially larger

than in the clear-air environment. This was argued to

contribute to the discrepancy between entrainment rates

obtained by direct measurement and the bulk-plume

equations (Romps 2010). Such a discrepancy was dem-

onstrated for the case of total water and vertical ve-

locity by Dawe and Austin (2011b). Here, we use the

Lagrangian particles to explore the difference in ue be-

tween entraining air and the surrounding environment.

The paper is organized as follows. The numerical

methods and the simulation are briefly summarized in

sections 2 and 3, respectively. Section 4 describes the

details of the Lagrangian direct measurement of en-

trainment. The in-cloud residence times of entrained air

parcels are studied in section 5. In section 6, we discuss

the height of origin for entrained air parcels and their

thermodynamic properties. Finally, section 7 gives some

concluding remarks.

2. Numerical methods

The LES is performed using the fully compressible,

nonhydrostatic, cloud-resolving Das Atmosphärische

Modell (DAM) (Romps 2008). The governing equa-

tions are discretized using a fifth-order weighted es-

sentially nonoscillatory (WENO) method (Shu 1997),

and time is advanced using a total-variation-diminishing

third-order Runge–Kutta scheme (TVD-RK3) (Shu

and Osher 1988). Microphysics is modeled by the

six-class Lin–Lord–Krueger scheme (Lin et al. 1983;
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Lord et al. 1984; Krueger et al. 1995a). In the present

study, a subgrid-scale model is not included because it

was previously found to lead to poor distributions of

lower-tropospheric cloud (Romps and Kuang 2010a)

and violations of the second law of thermodynamics

(Romps 2008).

For the Lagrangian particle tracking, the velocityV(t)

and thermodynamic variables at the particle location

X(t) are computed by an interpolation from theEulerian

data. This approach has been used previously in LES to

study the convective boundary layer (Weil et al. 2004;

Kim et al. 2005; Dosio et al. 2005; Gopalakrishnan and

Avissar 2000), stratocumulus and cumulus (Krueger et al.

1995b; Heus et al. 2008; Yamaguchi and Randall 2012),

and congestus and cumulonimbus (Lin and Arakawa

1997a,b; Carpenter et al. 1998; Böing et al. 2012). We

have tested several interpolation schemes. It is found

that a simple linear interpolation, as used by Lin and

Arakawa (1997a,b), is not sufficient to resolve the mo-

tion of a Lagrangian particle near a cloud boundary,

where the spatial gradient of an Eulerian field becomes

very large. To account for such a discontinuity in the

numerical solution, the Eulerian fields are mapped onto

the Lagrangian particles using a third-order WENO

approximation. Consistent with the LES solver, the

equation of particle motion, dX/dt 5 V, is integrated

with TVD-RK3. Like the thermodynamic fields, the

velocity V is obtained by interpolation of the resolved

Eulerian velocity to the location of the particle. To en-

sure that the particles are tracking the resolved flow, this

velocity is not supplemented with any subgrid-scale

turbulent velocity. This same choice was also made by

Gopalakrishnan and Avissar (2000), Dosio et al. (2005),

and Böing et al. (2012).

3. Simulation

In the present study, convective entrainment is in-

vestigated by analyzing the Lagrangian statistics of air

parcels in a three-dimensional LES of a single cumulus

congestus. To initiate this cumulus congestus, aGaussian-

distributed temperature disturbance is added to a back-

ground state. The background temperature profile T0(z)

and specific humidity profile qy0(z) are taken from an

LES of radiative–convective equilibrium over a 300-K

ocean. The initial temperature field is then given by

T(x)5DT[11 j(x)] exp

 
2
jrj2

r2ref
2

z2

z2ref

!
1T0(z) , (1)

where DT 5 1 K is the magnitude of the temperature

perturbation; jrj is the radial distance from the center of

the computational domain; rref 5 1000 m and zref 5
500 m are the length scales of the warm thermal in the

horizontal (x–y) and vertical (z) directions, respectively;

and j is a random variable uniformly distributed in

(21, 1). The specific humidity is then increased to

match the relative humidity at that height before the

temperature disturbance was added,

qy(x)5
qy0(z)

qy0* (z)
qy*(x) ,

where an asterisk denotes the saturation humidity. The

initial density is then specified to give hydrostatic bal-

ance in each grid column.

The computational domain has dimensions of (Lx 3
Ly) 5 (20 km 3 20 km) in the horizontal plane and

27.5 km in the vertical direction. The computational

grid spacing is (dx, dy, dz) 5 (50 m, 50 m, 50 m). The

time-step size of dt 5 1 or 2 s is specified adaptively

based on the Courant–Friedrichs–Lewy (CFL) condi-

tion. Periodic boundary conditions are used in the hor-

izontal directions and the lower boundary is no-slip.

Since this is a transient simulation of a single cloud,

neither surface fluxes nor radiation is used. For the La-

grangian particles, a bounce-back boundary condition is

imposed at zlow 5 0 and zupp 5 20 km.

Figure 1 shows the three-dimensional cloud boundary

at 15, 20, 25, and 30 min. The cloud boundary in this

figure is defined by the 1025 kg kg21 isosurface of the

mass fraction of nonprecipitating cloud condensates qc.

The base of the cloud is located at roughly z 5 500 m,

and the cloud top reaches just over 8 km. The radius of

the cloud ranges from about 500 m at the cloud base to

1000 m near the cloud top. Figure 2 shows the trajec-

tories of five particles over t 5 0–1 h. These five tra-

jectories are chosen among the particles whose location

is below the cloud base at t 5 0 and around the cloud

top at t 5 1 h. The colors on the trajectories denote qc.

The particle trajectories exhibit rotational motions

because of turbulent eddies, and the changes in the

color contours indicate the high spatial variability of qc
within the cloud. After detraining, the particles travel

a few kilometers in the horizontal directions due to

divergence.

Here, we use 43 107 Lagrangian particles as a conju-

gate solution of the Eulerian LES. As such, a subgrid-

scale fluctuation is not added to the equation of motion

of the Lagrangian particles. This allows the Lagrangian

particles to follow the resolved flow. In this way, changes

in a particle’s conserved variables, such as equivalent

potential temperature, are attributable to unresolved

mixing processes, such as subgrid or numerical diffu-

sion. This choice also allows the massless particles to be
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associated with a constant effective mass of dry air, as

described below.

Following the volume-averaging procedure of Jackson

(1997), the governing equation of the number density

of the Lagrangian particles is given by the conservation

equation,

d ln(n)

dt
52$ � u5

d ln(ra)

dt
, (2)

in which d/dt is the total derivative, n is the number

density of the Lagrangian particles (m23), u is the ve-

locity of air, and ra is the density of dry air. If the fluid is

incompressible, $ � u 5 0, then Eq. (2) implies that the

number density field is invariant in time. In a compress-

ible flow, however, the volume of an air parcel is not

conserved and, hence, neither is n. If we define the

specific number density (kg21) as n* 5 n/ra (i.e., the

number of particles in a unit mass) then it is trivial to

show that the specific number density field is conserved

in time, dn*/dt 5 0.

Figure 3a shows the horizontally averaged number

density at each 50-m grid level. For the initial condition,

the particles are distributed randomly in the computa-

tional domain with a constraint that the horizontally

averaged n* is constant in the vertical direction. As ra is

a decreasing function of height, n is also largest near the

ground and decreases with the height. The horizontally

averaged n* on each grid level is shown in Fig. 3b at the

beginning of the simulation (black line) and after 1 h

(red circles). The equations for n and n* indicate that, if

the continuity equation and the particle velocity are

computed with a high accuracy, n and n* should be in-

variant in time, respectively, in incompressible and

FIG. 1. Development of the cumulus congestus at (clockwise from left top) times 15, 20, 25, and 30 min. The cloud is

identified by the isocontour of qc 5 1025 kg kg21.
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compressible flows. In the present simulation, as ex-

pected, the horizontally averaged n* remains virtually

unchanged in time. Heus et al. (2008) found significant

spurious clumping of particles at the lower boundary

when the subgrid velocity fluctuation was omitted (see

their Fig. A1), but we find that the difference between

the smallest and largest n* in the first vertical grid cell

remains less than 1% throughout the computational

period. We have tested a few interpolation schemes and

found that using a linear interpolation may result in

a larger fluctuation of the specific number density near

the lower boundary.

In the present Lagrangian framework, each particle

represents a fraction of the total mass of dry air in the

computational domain from z5 0 to Lz 5 20 km (recall

that the bounce-back level is 20 km). The mass per par-

ticle is simply

dm5
1

Np

ðL
z

0
dz

ðL
x

0
dx

ðL
y

0
dy ra(x)5

1

n*
,

where Np 5 43 107 is the total number of the particles.

The motion of each Lagrangian particle represents

the transport of dry air of dm ’ 100 tons, which cor-

responds to a cubic mass of near-surface air with

a width of about 45 m.

It is important to note that the Eulerian thermody-

namic fields are subject to numerical diffusion in a

way that the Lagrangian particles are not. Recall that

the thermodynamic properties associated with a La-

grangian particle are given by the interpolation of the

Eulerian fields to the position of the particle. There-

fore, as particles rise up along with the cloud, one

might imagine that water would diffuse out of the

cloud numerically, leading the in-cloud particles to

have a smaller mean equivalent potential temperature

than the mean value with which they started. Here, the

equivalent potential temperature is a conserved vari-

able for all adiabatic and reversible transformations

(Romps and Kuang 2010a). To test for this effect, we

compute the mean ue of the cloud using two different

methods: once using ue of the in-cloud particles at the

time of sampling and once using the initial ue (i.e., at t5 0)

of the in-cloud particles. First, we define an activity op-

erator A to identify a cloudy region. In particular, we

focus here on cloudy updrafts, as they are responsible for

the majority of latent heat release and are the focus of

most convective parameterizations. Cloudy updrafts are

defined as those regions whereA is positive. The activity

operator used here is

A5

(
1, if qc . qthreshold and w.wthreshold

0, otherwise
,

(3)

where w is the vertical velocity. Following Romps

(2010), we use qthreshold 5 1025 kg kg21 and wthreshold 5
1 m s21. Using this activity operator, we define

FIG. 2. Trajectories of seven particles that are entrained at the

cloud base and transported to the cloud top. Colors denote qc.

FIG. 3. (a) Number density n and (b) specific number density n*

as functions of height. In (b), the solid line is the initial condition

and the circles denote the n* profile after 1 h.
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huei(z)5
1

T

ðT
0
dt

8<
:dm�

N
p

i51

uie(t)Ai(t)I I(z)[Zi(t)]

9=
;
,

hmi(z) ,

(4)

hu0ei(z)5
1

T

ðT
0
dt

8<
:dm�

N
p

i51

uie(0)Ai(t)I I(z)[Zi(t)]

9=
;
,

hmi(z) ,

(5)

in whichT is the total simulation time (1 h) andZi(t) and

uie(t) are the vertical location and the equivalent po-

tential temperature of the ith particle at time t, respec-

tively. The term I I(z)[Z] is an indicator function of

a small interval centered at z, I(z)[ [z2 dz/2, z1 dz/2],

which is defined as I I(z)[Z]5 1 if Z 2 I(z) and I I(z) 5 0,

otherwise. The time-averaged cloud mass hmi(z) is

computed from

hmi(z)5 1

T

ðT
0
dt dm�Ai(t)I I(z)[Zi(t)]
n o

.

The results are shown in Fig. 4. Below 9 km, the

agreement between huei and hu0ei is satisfactory. The

difference between two computations is less than about

0.5 K. It is not straightfoward to pin down the source of

this difference. It may stem from numerical diffusion,

numerical error involved in the interpolation of Euler-

ian variables, or from the fact that ue is not exactly

conserved in a precipitating cloud. Above 9 km, hu0ei
shows a significant fluctuation, which seems to be related

to the small sample size in the region. The total number

of particles sampled in each 100-m-wide bin below 9 km

over the simulation period of 1 h is about O(104–105),

while above 9 km the number of particles reduces dra-

matically to less than 2000. We conclude from this figure

that numerical diffusion likely affects the ue of individual

particles (as illustrated by the noise above 9 km, where

particle numbers are small), but it does not introduce

any significant mean bias (as illustrated by the excellent

match below 9 km, where particle numbers are large).

4. Entrainment rate

The activity operator, defined in Eq. (3), can be ap-

plied to either the ith Lagrangian particle [i.e., Ai(t)] or

the Eulerian location x [i.e., A(x, t)]. Let us consider

a thin horizontal slice of the atmosphere defined by the

height interval I(z) [ [z 2 dz/2, z 1 dz/2]. In the Eu-

lerian framework, the dry air within a small volume of

size dxdydz centered on x [ (x, y, z) contributes the

following amount to the vertical momentum of cloudy

updrafts in I(z) at time t:

A(x, t)[dx dy dzra(x, t)]w(x, t) .

Averaging this over x and y and dividing by dz gives the

mean mass flux M as calculated in the Eulerian frame-

work,

M(z, t)5
1

LxLy

ðL
x

0
dx

ðL
y

0
dyA(x, t)ra(x, t)w(x, t) . (6)

In the Lagrangian framework, the dry air associated

with particle i contributes the following amount to the

vertical momentum of cloudy updrafts in I(z) at time t:

Ai(t)dmWi(t)I I(z)[Zi(t)] .

Here, Wi is the vertical velocity of particle i. Summing

this over all particles and dividing by the control volume

LxLydz gives M as calculated in the Lagrangian frame-

work,

M(z, t)5
dm

LxLydz
�
N

p

i51

Ai(t)Wi(t)I I(z)[Zi(t)] . (7)

Figure 5a plots M as calculated in the Eulerian frame-

work (solid line) and in the Lagrangian framework

FIG. 4. The time-averaged cloud equivalent potential tempera-

tures computed from the initial ue of the particles (solid circles) and

ue at the instantaneous location of the particles (open circles). The

solid line indicates the environmental ue.
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(circles) averaged over the first hour of the simulation.

The agreement between the Lagrangian and Eulerian

calculations is excellent.

In the Eulerian framework, the entrainment rate is

calculated using the direct measurement method of

Romps (2010). In particular, we diagnose the sources of

an Eulerian continuity equation for active air in each

grid cell. This source is averaged over the time it takes

the boundary of active air to pass over the grid cell. If

this averaged source is positive, then it is counted as

entrainment. If it is negative, then it is counted as de-

trainment. As a consequence of this averaging proce-

dure, Eulerian direct measurement cannot resolve the

detailed partitioning between entrainment and de-

trainment on time scales less than the time it takes the

updraft boundary to move 2dx 5 100 m. For typical

speeds of large, turbulent eddies of about 5 m s21, this

implies a time scale of about 20 s. For example, if there

is actually 10 kg of entrainment and 3 kg of detrainment

in that 20 s, then Eulerian direct measurement will

report 10 2 3 5 7 kg of entrainment and 0 kg of

detrainment during that time. This effect will tend to

bias low the entrainment rates obtained from Eulerian

direct measurement.

In the Lagrangian framework, the local entrainment

rate e(x, t) is the number of particles that switch from

inactive to active in each grid cell over some averaging

time. Here, the entrainment rate is computed at each

time step, dt 5 2 s. The horizontally averaged entrain-

ment rate is then calculated in the Lagrangian frame-

work as

e(z, t)5
dm

LxLydzdt
�
N

p

i51

H[Ai(t)2Ai(t2 dt)]I I(z)[Zi(t)] ,

(8)

whereH is the Heaviside unit step function:H(x)5 1, if

x . 0, and H(x) = 0, otherwise. We refer to this as La-

grangian direct measurement.

Figure 5b plots the rate of entrainment averaged over

the first hour using Eulerian direct measurement (solid

line) and Lagrangian direct measurement (circles). The

Eulerian and Lagrangian entrainment rates are qualita-

tively similar. Both Eulerian and Lagrangian measure-

ments show strong cloud-base entrainment at z’ 500 m,

which is followed by a local minimum at z’ 1000 m. For

1000 , z , 8000 m, the Lagrangian entrainment rate

profile is very similar to the Eulerian entrainment rate,

but it is consistently larger in the free troposphere by

about 20%.

In Fig. 5c, the net entrainment rate, defined by the

entrainment rate subtracted by the detrainment rate, is

plotted to test the consistency between the Lagrangian

and Eulerianmeasurements. The Lagrangian detrainment

rate is computed similar to Eq. (8) but withH[Ai(t2 dt)2
Ai(t)]. It is found that the net entrainment rate shows

an excellent agreement between the Lagrangian and the

Eulerian measurement methods. This result indicates

that, although the mass of air entrained into a cloud

computed by the Lagrangian method is higher than that

of the Eulerian measurement, the Lagrangian estimate

also predicts a higher detrainment rate so that the mass

flux of the cloud estimated by the Lagrangian method is

consistent with that of the Eulerian method.

5. Residence times

When we browse through the particle trajectories that

pass through the cloud, we find that the activity of

a typical Lagrangian particle changes several times on

a fairly short time scale, from tens of seconds to a few

minutes. These fluctuations occurring on a time scale of

less than about 20 s may contribute to the higher

FIG. 5. (a) The mean mass flux of cloudy updrafts averaged over

the first hour using the Eulerian framework [Eq. (6); solid line] and

Lagrangian framework [Eq. (7); circles]. (b) Entrainment rate, and

(c) net entrainment rate; lines are from the Eulerian measurement,

and the Lagrangian estimates are shown as circles.
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entrainment rate measured by the Lagrangian method.

For demonstration, we randomly choose a particle from

a pool of the Lagrangian particles that have an initial

location below the cloud base, Z(0) , 500 m; a final

destination near the cloud top, Z(1 h). 7000 m; and at

least four reentry events (detrainment followed by

a subsequent entrainment). The trajectory of this ran-

domly selected particle is shown in Fig. 6. This figure

displays its time series of vertical location (Fig. 6a), ac-

tivity operator (Fig. 6b), vertical velocity (Fig. 6c), and

equivalent potential temperature (Fig. 6d). As can be

seen from Fig. 6b, the particle exhibits multiple entrain-

ment and detrainment events on a short time scale.

Comparing Figs. 6b,c, it is clear that the rapid detrainment

and reentry events for this particle are due to the oscilla-

tions in its vertical velocity. For this particular trajectory,

only the first entrainment event at t ’ 7 min is associated

with condensation. After that initial entrainment, qc re-

mains well above qthreshold with qc’ 1023–1022. Figure 6d

shows the changes of ue, which is conserved for all adi-

abatic and reversible transformations. The equivalent

potential temperature of the particle remains constant

until the particle reaches z’ 1500 m, suggesting that this

particle remains in a protected core up to 1500 m. This

will be discussed further in section 6. A rapid decrease of

ue is observed after 10 min due to the mixing with envi-

ronmental air entrained laterally. From 10 min, ue drops

about 8 K in less than 2 min, suggesting that the time

scale of mixing is relatively small. A similar rapid de-

crease of the potential temperature has been observed in

the bubble simulation of Lasher-Trapp et al. (2005).

An important time scale in the entrainment process is

the time a parcel remains in the cloud once it has

entrained. We denote the length of time between a par-

ticle’s entrainment and subsequent detrainment by T e;

we will refer to this as the ‘‘residence time.’’ Similarly,

we define the length of time between a particle’s de-

trainment and subsequent entrainment by T d; we will

refer to this as the ‘‘reentry time.’’ Figure 7a shows the

probability density function (PDF) of particle entrain-

ment events pe as a function of T e and the PDF of particle

detrainment events pd as a function of T d. It is found that

the PDFs are strongly peaked around zero time. Both

pe(T e) and pd(T d) decrease by about three orders of

magnitude between T 5 0.5 and T 5 20 min. The be-

havior of the PDFs at small T suggests that air parcels are

moving in and out of the cloud (defined by A 5 1) on

a very short time scale due to small-scale turbulent

eddies. As we will see shortly, the discrepancy in Fig. 5b

can be explained by this high-frequency oscillation, which

is not captured by Eulerian direct measurement.

Although Fig. 7a shows that the most common en-

trainment events are those that bring air into the cloud

for less than 20 s, this does not imply that the cloud

is ventilated on this time scale. Instead, these fast

entrainment/detrainment events account for a small frac-

tion of the cloud mass precisely because these parcels

reside in the cloud for such a short time. The blue circles

in Fig. 7b plot the PDF of cloud updraft mass C as

a function of residence time (as opposed to the PDF of

particle entrainment events as a function of residence

time). At every time step, each active particle (or,

rather, its corresponding mass dm) is binned according

to the residence time of that particle within the cloud

(i.e., the time of its next detrainment event minus the

time of its previous entrainment event). In other words,

C is related to pe and the cloud mass as

C(T e)5 pe(T
e)T e

ðT
0
dtL(t)ðT

0
dtm(t)

5
pe(T

e)T eð‘
0
dT e0pe(T

e0)T e0
, (9)

in which T is the total simulation time, m(t) is the mass

of the cloud at time t, and L(t) is the total rate of en-

trainment at t, as shown:

FIG. 6. A sample trajectory chosen randomly from those particles

beginning below cloud base, ending near the cloud top, and expe-

riencing at least four reentry events: (a) vertical location, (b) A 5
H(qc 2 qthreshold)H(w 2 wthreshold), (c) vertical velocity, and (d)

equivalent potential temperature. The horizontal line in (c) de-

notes wthreshold.
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L(t)5LxLy

ðL
z

0
dz e(z, t) .

We see from Fig. 7b that the most common type of

parcel in the cloud has a residence time of T e ’ 1.5 min.

Also, C(T e) decreases slowly for T e . 1.5 min, com-

pared to p(T e), which exhibits a rapid exponential decay

with T e. The cumulative distribution function (CDF) of

C(T e), the dashed black line in Fig. 7b, shows that 90%

of the cloudy-updraft mass comprises parcels with resi-

dence times greater than 1 min.

As argued above, Eulerian direct measurement is

likely to be biased low because of the way it must av-

erage over the time it takes the active boundary to move

two grid steps (a time estimated to be about 20 s). It is

also possible that the Lagrangian method is biased high

due to numerical artifacts leading to spurious oscilla-

tions in the time series of a particle’s w or qc, which

would lead to spurious oscillations inA. It is not possible

at this point to say which of either Eulerian or La-

grangian direct measurement is more accurate. Confi-

dence in both methods is buoyed by the fact that they

give quantitatively similar estimates of the entrainment

rate, as shown by Fig. 5b.

To confirm that the difference between the Eulerian

and Lagrangian methods lies in the fast recycling events,

we recompute the Lagrangian estimate of entrainment

rate by discarding particles’ entrainment and de-

trainment couplets that are separated in time by less

than a chosen filter t. In Fig. 7c, the Lagrangian en-

trainment rate with t 5 0, 20, 60, and ‘ s are displayed

together with the Eulerian measurement; t 5 ‘ in-

dicates that an air parcel is not counted as reentrained

after its first entrainment event. As expected, the La-

grangian entrainment rate is a decreasing function of t

except for the cloud-base entrainment. When the fast

reentry events associated with the sharp peak of pe and

pd for T , 20 s are filtered, the Lagrangian entrainment

rate is in excellent agreement with the Eulerian mea-

surement. The decrease of the Lagrangian entrainment

rate at larger t indicates that a large amount of the en-

trained air is not directly from the environment but from

the cloud itself. Among all 368 702 entrainment events

in the simulation, 61% (223 833) are from reentry

events. In contrast, the cloud-base entrainment is mainly

due to the saturation of warm air as it ascends adiabat-

ically from the ground to the lifting condensation level

and, hence, t has no effect on the cloud-base entrain-

ment. The entrainment rate estimated with t 5 ‘ sets

the lower bound of the Lagrangian entrainment rate.

This lower bound of Lagrangian entrainment rate is

about half of the Eulerian direct measurement, which is

closer to a bulk-plume estimate (Romps 2010). Figure

7d shows the fractional entrainment rate calculated by

the ratio of the entrainment rate to the mass flux of ac-

tive air: that is, e/M. The fractional entrainment rate is

diagnosed to have a value around 1–2 km21, and the

lower bound of the Lagrangian fractional entrainment

rate is about 0.5 km21.

6. Heights of origin

In this section, we focus on the origin of the cloud air as

estimated by the Lagrangian particles. First, we show

snapshots of themost recent entrainment height zent of the

cloudy-updraft or active air at 10 (developing stage), 20

(fully developed stage), and 30 min (dissipating stage) in

FIG. 7. (a) PDFs of residence time for entrainment events (blue

open circles) and reentry time for detrainment events (red solid

circles). The dashed line denotes t5 20 s. (b) The symbols show the

time-averaged cloud mass PDF C(T e), and the dashed line is the

CDF of C(T e). (c) The line is the entrainment rate from the Eu-

lerian measurement, and the symbols are obtained by Lagrangian

direct measurement. From right to left, the symbols show the en-

trainment rates estimated by excluding reentry events faster than

0 (dark blue circles), 20 (green circles), 60 (red circles), and ‘ s

(light blue circles). (d) The fractional entrainment rate. The sym-

bols in (d) coincide with those in (c).
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Figs. 8a–c. The height of entrainment is computed by an

azimuthal average and shown as a function of the radial

distance from the center of the domain r and the altitude z.

In the developing stage (Fig. 8a), most of the active air

in the cloud has been entrained near the cloud base. In

Fig. 8b, it is shown that there is a cloud core for z, 2 km,

where most of the air in that region comes from the cloud-

base entrainment. In the middle of the cloud, 4 , z ,
7 km, the cloud air has most recently entrained, on

average, from about 1 to 2 km below. In Figs. 8a,b, there is

a narrow band near the cloud top, where zent ’ z. This

sharp front of the newly entrained air indicates cloud-top

entrainment. Finally, in the dissipating stage (Fig. 8c), the

core region has disappeared and the air remaining in the

cloud is mostly entrained near the current height of the air

parcels, that is, zent ’ z. The empty holes of the active air

observed near the center of the cloud are due to the rain-

induced downdrafts.

FIG. 8. Color contours denote the azimuthally averaged height of entrainment for active air zent at t 5 (a) 10, (b) 20, and (c) 30 min.

(d)–(f) The original height of the active air zorg.
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In section 5, we have shown that an air parcel may

experience multiple detrainment and reentrainment

events. As a consequence, the entrainment height zent as

it is defined here may not be a good measure of the or-

igin of entrained air. Instead, the original height of ac-

tive air zorg (i.e., the height of the Lagrangian particles at

t 5 0) is shown in Figs. 8d–f. In general, zorg is less than

zent. For example, in Figs. 8b,e, the average zorg for the

cloud in 5 , z , 7 km is around zorg 2 (2, 4) km, while

zent in that region indicates the cloud air is from 4, z,
6 km. This difference in zorg and zent can be explained by

reentrainment events due to energetic turbulent eddies.

In convective parameterizations, it is standard to as-

sume that air entrained at z has thermodynamic prop-

erties equal to that of the environment at z. To assess

this assumption, we plot the mean equivalent potential

temperature of air when it entrains uente as a function of

where it entrains (zent) for the set of particles that re-

mains in the cloud at t5 15 min (Fig. 9a) and t5 20 min

(Fig. 9b). The mean ue in the cloud uclde and the mean ue
in the environment uenve are also plotted for reference.

This shows that the equivalent potential temperature of

entraining air uente (z) is much higher than uenve (z). This is,

in large part, because a significant fraction of the en-

trained air is previously detrained by the cloud and,

therefore, has a higher ue (i.e., is moister) than the en-

vironment. Another contribution comes from numerical

diffusion. The red circles in Fig. 9 show the mean equiv-

alent potential temperature of air when it first entrains

(uent,0e ) as a function of where it first entrains (zent,0) for

the same set of particles in the cloud at t5 15 (Fig. 9a) and

t 5 20 min (Fig. 9b). As expected, uent,0e (z) is lower than

uente (z). Nevertheless, uent,0e is still about 1–2 Khigher than

uenv. Below 6 km, this is likely partially due to the lifting

of parcels (from lower heights with higher ue) before they

entrain. There is likely also a contribution to the ue of

entrainment parcels from moistening by numerical dif-

fusion in the vicinity of the cloud.

Figure 9 also shows that, as the top of the cloud is

approached, the cloud ue decreases rapidly and eventu-

ally approaches uenve . This is consistent with the en-

trainment of environmental air at the cloud top as

observed in Fig. 8. Further investigation has shown that

an air parcel near the cloud top ascends, on average,

a few hundred meters before being entrained. The de-

tailed mechanism of this cloud-top entrainment is be-

yond the scope of the present study.

7. Concluding remarks

In this study, we introduce a Lagrangian framework

to diagnose cloud processes in large-eddy simulations,

and we use that framework to study a single cumulus

congestus. Although it is standard practice to include

a subgrid-scale (SGS) model in the equation for particle

motion (e.g., Heus et al. 2008), such an SGS model is

intentionally omitted here. Another choice that is made

deliberately in this study is to initialize the particles with

a random spatial distribution subject to the constraint

that the specific number density is spatially invariant in

a statistical sense. These two choices, along with a careful

choice of numerics, guarantee that the constant specific

number density remains invariant in space and time (see

Fig. 3b). This allows the Lagrangian histories to serve as

a conjugate solution for the resolved Eulerian flow. This

approach has some obvious benefits over the Eulerian

tracer method of Romps and Kuang (2010a,b), which can

track only one real number per additional tracer. Here,

a single Lagrangian particle can carry a wealth of history

information with little computational expense.

FIG. 9. Equivalent potential temperature of various quantities at

t 5 (a) 15 and (b) 20 min. Environmental ue (u
env
e , dashed line),

cloud ue (uclde , black open circles), ue of cloud air when last en-

trained as a function of where last entrained (uente as a function of

zent, blue solid circles), and ue of cloud air when first entrained as

a function of where first entrained (uent,0e at zent,0, red open circles).
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Given the kinematic and thermodynamic time series

for each of the Lagrangian particles, it is straightforward

to calculate the convective entrainment rate [see Eq.

(8)]. We refer to this procedure as Lagrangian direct

measurement of entrainment. As shown in Fig. 7c, the

Lagrangian direct measurement gives an entrainment

rate (solid blue circles) that is very similar to the rate

obtained from Eulerian direct measurement (black line;

Romps 2010), but it is consistently higher by about 20%

in the free troposphere. It is shown here that this is due

to the recycling of particles into and out of the cloud on

short time scales (less than 20 s) that are not resolved by

the Eulerianmethod. By filtering out those fast recycling

events, Lagrangian direct measurement produces an

entrainment rate (open green circles in Fig. 7c) that is in

excellent agreement with the Eulerian result.

Studying the kinematic and thermodynamic histories

of the Lagrangian particles has revealed additional in-

formation on the entrainment process. Kinematically, it

is found that 61% of all entrainment events are actually

reentrainment of air previously detrained by the cloud.

Nevertheless, about 90% of the total mass of the cloud is

composed of air parcels whose in-cloud residence time is

larger than 1 min. In agreement with the observed

fractional entrainment rate of 1–2 km21, the mean entry

height of cloud updraft air ranges from 0 to 1 km below

the height of observation (see Figs. 8a–c). In agreement

with the observation that the majority of entrainment

events are actually reentrainment events, the mean

original height of cloud-updraft air ranges from 0 to 2 km

below the height of observation (see Figs. 8d–f). Contrary

to Heus et al. (2008), who concluded that there is not

significant cloud-top entrainment in shallow cumulus,

some clear evidence is found for cloud-top entrainment

by the cumulus congestus in this study. Further work will

be needed to quantify the relative magnitudes of lateral

entrainment and cloud-top entrainment.

Thermodynamically, the entraining parcels of air are

found to have an equivalent potential temperature ue
(blue circles in Fig. 9) that exceeds that of the environ-

ment (dashed line). This is primarily a consequence of

the large number of reentrainment events. Calculating

ue of entraining air for parcels’ first entrainment event

only (red circles), ue is found to be much closer to the

environment.
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APPENDIX

Sensitivity to Activity Operator

The entrainment rate and other statistics will depend

on the definition of cloud or cloud updrafts as defined by

the activity operator A. In this study, we have used A 5
H(qc 2 qthreshold)H(W 2 wthreshold), where wthreshold 5
1 m s21 and qthreshold 5 1025 kg kg21. To show the

sensitivity of the Lagrangian statistics to A, the resi-

dence time and reentry time PDFs (pe and pd) are re-

computed using A 5H(qc 2 qthreshold) with qthreshold 5
1025 kg kg21 (Fig. A1). Here, the original activity op-

erator is denoted asAw,q and the new operator isAq. It is

shown that all of the probability density functions are

FIG. A1. The (a) residency time and (b) reentry time PDFs for

different activity operators. The red solid circles denote the PDFs

for Aw,q 5 H(qc 2 qthreshold)H(W 2 wthreshold), and the blue open

circles are for Aq 5 H(qc 2 qthreshold).
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peaked near the origin and exhibit a rapid exponential

decay at short times, suggesting the short-time-scale re-

cycling is a robust feature. As expected, while pe for both

Aw,q and Aq exhibit exponential decays, pe for Aq de-

creases much more slowly compared to that of Aw,q.

More interestingly, it is found that the reentry probability

density functions forAw,q andAq collapse onto one curve

for T d . 5 min.

Figure A2 shows the trajectory of a sample particle.

This particle is selected randomly among the set of

particles whose initial location is below the cloud base,

whose final location is above 7 km, and that experi-

ences at least six reentry events based on Aq. In Fig.

A2a, it is shown that the particles’ activity oscillates on

a short time scale. Unlike the high-frequency activity

oscillations seen in Fig. 6b, the high-frequency oscilla-

tions seen here are related to the oscillation of qc
around qthreshold (Fig. A2c).
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densates mixing ratio, which is shown as a semilog plot. The hori-

zontal lines in (b) and (c) are w 5 0 and qthreshold, respectively.
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